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1 Introduction

1.1 Abstract and foreword

This thesis deals with a topic in applied probability theory.
We observe a sequence X1, X2, . . . , Xn of nonnegative independent identically distributed
random variables sequentially and want to select as many as possible of them so that the
sum of the selected random variables does not exceed a given value c. We inspect the
random variables in sequence not knowing the Xi’s still to come. But we do know the
distribution of the random variables. The decision whether we select a random variable
must be made at the time it is presented to us. We cannot reject a random variable later
once we have chosen to select it, neither can we select one that we have rejected earlier.
We call a rule saying which random variables to select an online selection policy if it meets
above requirement.
The problem will be to examine the largest possible expected number of selected random
variables within all online selection policies and find a good policy in that sense.
Various papers have been written on that topic, most of them referring to [3] – a paper by
Coffman, Flatto and Weber – who first examined the problem for a distribution function
F of the Xi of the form F (x) ∼ Axα as x → 0. The authors also note that, if the online
restriction in above problem was dropped, and one could simply inspect all Xi’s at the
beginning and then select the smallest ones first, one could not do much better than with
the online restriction. The advantage such a ’prophet’ would have becomes asymptotically
negligible as n becomes large.
Later, their results have been generalized by Rhee and Talagrand ([14]) to arbitrary dis-
tribution functions F . Gnedin ([8]) has introduced and examined a generalization of this
problem. In this variant the number of random variables n itself is a random variable
N with known distribution and which is independent of the Xi’s. Again, we sequentially
inspect X1, X2, . . . , XN but don’t know how many random variables there will be. In this
problem, too, the advantage of knowing the sequence X1, X2, . . . (but not N) in advance
does not lead to an asymptotically better result than the best online policy gives.
The thesis in hand examines both the problem with fixed n and with random N for d-
dimensional random vectors X1, X2, . . . in the positive orthant of Rd. The sum restriction
is replaced by the restriction that the sum of the selected random variables must be less
than or equal to a constant c ∈ Rd in each coordinate.
Here is an – admittedly not very realistic – example. A butcher has d different kinds of
meat. On a certain day N customers come to her shop, the j-th customer demanding X

(i)
j

grams of meat sort i. She knows from her experience the distribution of N and of the
customer demands Xj . But on that day it is foreseeable that she won’t be able to serve
all the customer demands. She only has ci grams of meat sort i. Being afraid of losing
customers , she wants to annoy as few of them as possible. She decides to try to serve as
many customer demands completely as possible. Who should she serve?
Another weakness of this example is that she might use her knowledge of the remaining
time until her shop closes to predict the number of customers still to come which is not
allowed in our model. But I think the example is still realistic enough to illustrate the



features of a heuristic policy. She will serve customers who demand little of a kind what
she has little left of and she will rather serve the same demand in the beginning than later.
Chapter 2 deals with the problem for fixed n. First the structure of an optimal online
selection policy is examined and its existence is proven. But the exact solution to this
problem for a given nontrivial instance, i.e. distribution and n, seems intractable. We
instead examine the asymptotics of the maximal expected number of selected variables
when n → ∞ for an arbitrary continuous distribution of the Xi’s. As upper bound on
this quantity will serve the best possible performance of the prophet as mentioned above.
In order to establish the lower bound – by actually giving a simple online policy that
asymptotically achieves optimality – we first examine another problem. Given a measure
on the positive orthant we need to maximize the volume V of a region R in the positive
orthant under the restriction that V · (barycenter of R) stays in each coordinate below a
given value.
In chapter 3 we examine the maximal expected number of selected random variables for
random N asymptotically. What asymptotically here exactly means (’N large’) will have
to be specified. This problem is more general than the one with fixed n but we can only
solve it for a smaller class of distributions.
In section 4.1 we give an upper bound on the expected number of random variables a
prophet can select in the one-dimensional case. This will also serve as an upper bound
on the best possible performance of online selection policies. We will use this result in
chapters 2 and 3.

I would like to thank Dr. habil. Alexander V. Gnedin, who always took the time to help
me when I had problems.
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1.2 Notations and definitions

Most of this thesis deals with the d-dimensional real vector space Rd.
For x,y ∈ Rd, x = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd) we will write

x ≤ y :⇐⇒ xi ≤ yi for i = 1, 2, . . . , d

and
x < y :⇐⇒ xi < yi for i = 1, 2, . . . , d.

If z ∈ Rd we will assume that z = (z1, z2, . . . , zd) without saying so. The same holds if
z is a function with values in Rd. If a symbol already has a subscript – e.g. we have
a sequence (zn)n with zn ∈ Rd – we will write superscripts to denote the coordinates:
zn = (z(1)

n , z
(2)
n , . . . , z

(d)
n ).

‖x‖p = (
∑d

i=1 xp
i )

1/p denotes the p-Norm of x (1 ≤ p < ∞) and ‖x‖∞ := maxi |xi|.
〈x,y〉 denotes the Euclidean scalar (inner) product of x and y.
Write 1 := (1, 1, . . . , 1) ∈ Rd and 0 := (0, 0, . . . , 0) ∈ Rd. Let Rd

+ := {x ∈ Rd |x ≥ 0}.
For A,B ⊂ Rd write A ≤ B if a ≤ b for all a ∈ A and b ∈ B. Correspondingly, for the
other comparing operators. We will also write x ≤ A meaning x ≤ a for all a ∈ A.

Definition 1.1 A set A ⊂ Rd
+ is a lower-layer if x ∈ A, 0 ≤ y ≤ x implies y ∈ A.

For two subsets A,B of the same space M let A¦B := A\B∪B \A denote the symmetric
difference. Let Ac = M \A be the complement of A in M . If M is a topological space let
A◦ denote the interior of A.
For two real functions f, g : M → R, and y ∈ M we will write

f(x) ∼ g(x) (as x → y) :⇐⇒ lim
x→y

f(x)
g(x)

= 1

Usually M will be R or N. Then y = ∞ is allowed and always meant when nothing else
is stated. That is, we will then just write f ∼ g. We will also write

f >∼ g :⇐⇒ lim inf
x→∞

f(x)
g(x)

≥ 1 and f <∼ g :⇐⇒ lim sup
x→∞

f(x)
g(x)

≤ 1.

Note that >∼ and <∼ are transitive and that f >∼ g, f <∼ g implies f ∼ g.
Further, for x, y ∈ R, x+ := max{x, 0} is the positive part of x and x ∧ y denotes the
minimum of x and y.
Let B(Rd) be the Borel σ-algebra on Rd (generated by the open sets). And for measurable
M ⊂ Rd, i.e. M ∈ B(Rd) we will write B(M) for the restriction of B(Rd) to M . When we
take A ⊂ M we implicitly assume that A is measurable. λ will always denote the Lebesgue
measure – usually on Rd. For a given measure µ on M let N denote the set of sets of
measure 0. If f is a measurable mapping from M toR we will write ‖f‖p := (

∫
M |f |p dµ)1/p

for the Lp-norm. Also ‖f‖∞ = ess sup f .
Let Poi(s) denote the Poisson distribution with parameter s.
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1.3 Formulation of the general problem

Let 0 < c ∈ Rd, and let Q = [0, c]d be the d-dimensional interval with endpoints 0 and c.
Let X1, X2, . . . ≥ 0 be independent identically distributed d-dimensional random vectors
with law µ on Rd

+. Let X = (X1, X2, . . .). We will speak of the Xi’s as sizes of items and
of subintervals of Q as space. Let N be a positive integer-valued random variable that is
independent of X. N is the number of items that are at disposal to be packed. Let ν be
the distribution of N .
All random variables are assumed to be defined on some common probability space
(Ω,A, P ).

Definition 1.2 A selection policy is a function
Ψ = (Ψ1, Ψ2, . . .) :

∏
N
Rd

+ → {0, 1}N.

Definition 1.3 An online selection policy is a selection policy Ψ = (Ψ1, Ψ2, . . .) where
x = (x1, x2, . . .) ∈

∏
N
Rd

+ is mapped to Ψ(x) = (Ψ1(x), Ψ2(x), . . .) and

Ψj(x) = Ψj(x1, . . . , xj) (j = 1, 2, . . .),

that is, Ψj is a function of x1, x2, . . . , xj only.

Throughout this thesis a selection policy Ψ will be regarded as a function of the random se-
quence X and we will usually write Ψ instead of Ψ(X) and Ψj for Ψj(X). We say that item
j of size Xj is selected by Ψ if Ψj(X1, . . . , Xj) = 1 and it is rejected if Ψj(X1, . . . , Xj) = 0.
Note that for an online selection policy, Ψj depends only on X1, X2, . . . , Xj and therefore
the random variables Ψj , Xi and N are independent for i > j.

We consider the restriction that the sum of the selected variables must stay within Q. We
call those policies admissible that satisfy the sum constraint

∞∑

j=1

Ψj(x)xj ≤ c for all x ∈
∏

N

Rd
+. (1)

We are interested in the expected number of selected variables

E(Ψ) := E
N∑

j=1

Ψj (2)

and want to maximize it.

Let P be the set of all admissible online selection policies.
And let S be the set of all admissible selection policies.
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Define
Opt := sup

Ψ∈P
E(Ψ)

and
Proph := sup

Ψ∈S
E(Ψ),

the maximal expected number of selected items within the respective class of policies.

Interpretation: N is interpreted as the number of items. In (2) only the items selected
up to time N are counted, so we might as well interpret it as if there were no more items.
In P the decision whether to select Xj or not depends only on Xj and the ’past’:
X1, X2, . . . , Xj−1. The items come one after the other and we have to decide online, i.e.
without knowing the ’future’ and without revoking a decision we have made before. Our
decision can also depend on everything that is not random: The distribution of X and N .
But it cannot depend on N(ω) or Xj+1(ω), Xj+2(ω), . . ..
In S the decision can depend on the whole seqence X1, X2, . . .. We imagine a prophet
who is given the task of selecting the items. The prophet knows the sizes of all the items
in advance. His decision also can depend on the distribution of N . But it cannot depend
on N(ω) itself. So, the prophet is clairvoyant only to the sizes of the items, not to their
number N . We have chosen this partially clairvoyance because it will turn out that it does
not help the prophet much when the number of items becomes large. If the prophet also
knew N in advance, he could do significantly better even for large numbers of items.

This paper mainly deals with Opt and we have introduced Proph only to establish an
upper bound for Opt: As P ⊂ S, clearly

Opt ≤ Proph.

As Opt and Proph depend on the distribution of X and N and on c we will write
Opt = Opt(µ, c, ν) and Proph = Proph(µ, c, ν).
We will sometimes use this definition for a finite measure µ which has total mass p :=
µ(Rd

+) < 1 and therefore is not a probability measure. This should be interpreted in the
following way. With probability 1 − p the item is discarded right away and cannot be
selected. This is the same as defining the probability measure µ′ := µ+(1− p)ε∞, where
ε∞ denotes the Dirac measure with unit mass in some large enough point ∞ that does
not ’fit’ in Q anyway, and then defining Opt(µ, c, ν) := Opt(µ′, c, ν) and Proph(µ, c, ν) :=
Proph(µ′, c, ν).

In chapter 2 we will examine Opt(µ, c, ν) when N ≡ n is not random. And in chapter 3
we will treat a more general case for ν but with stronger assumptions on µ.



2 Sequential Selection out of n Random Vectors under a
Sum Constraint

In this chapter we consider the case when the total number of available items N is constant:

N ≡ n

or in other words ν is the Dirac measure with unit mass in n.
We have to use an online selection policy Ψ to select items from X1, X2, . . . , Xn under the
sum restriction (1). As the distribution of N (given by ν) is determined by n, we will now
write

Optn(µ, c) := Opt(µ, c, ν)

for the maximal expected number of selected items.

In section 2.1 we will give a recursion formula for Optn(µ, c) and derive that Optn is
monotone in c and µ in some sense.
In section 2.2 we will give some preliminary results on Optn(µ, c) for n → ∞ before
introducing an asymptotically optimal selection policy in section 2.4.

2.1 The exact solution

We can give a recursion formula (or Bellman equation) for the maximal expected number
of selected items Optn(µ, c). Unfortunately, the computation of its solution typically seems
to be intractable. Nevertheless, we can derive some theoretical results about Optn(µ, c)
from the recursion. Also, the existence of an optimal strategy will follow by induction on
n.
Fix the probability measure µ. If n = 1, an optimal policy is to select X1 if we can, i.e. if
X1 ≤ c. Then

Opt1(µ, c) = µ([0, c]). (3)

Now, let Optn(µ, c) already be defined for all c and let there be a policy which attains
this optimum.
Suppose that the first out of n + 1 random variables X1, X2, . . . , Xn+1 has been observed
and that X1 = x . If x 6≤ c we can’t select it. In this case – or if we choose to reject it
– we are left with the problem of packing n items into the space c. For this problem we
have an optimal policy which selects Optn(µ, c) items on average. But if x ∈ [0, c] and
we choose to select it we are left with space c− x and n more items. Here, too, we have
an optimal policy with Optn(µ, c− x) as expected number of selected items (in addition
to the first one).
For x ∈ [0, c] our decision will be based on which one of the values Optn(µ, c) and
1 + Optn(µ, c− x) is larger. An optimal strategy is to select X1 iff

1 + Optn(µ, c− x) ≥ Optn(µ, c) (4)
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and then apply the corresponding optimal policy to the subproblem with n items. And if
we set Optn(µ, c) := −∞ for c 6≥ 0 the expected number of selected items is

max {Optn(µ, c), 1 + Optn(µ, c− x)}

for all x ∈ Rd
+. Averaging in x, we get the recursion

Optn+1(µ, c) =
∫

Rd
+

max{Optn(µ, c), 1 + Optn(µ, c− x)} dµ(x) (5)

Now, we would like to compare Optn(µ, c) for different µ’s. Intuitively, if we have two
measures µ and µ′ and independent identically distributed random variables X1, X2, . . .
distributed according to µ and X ′

1, X
′
2, . . . distributed according to µ′ such that the Xi are

in some sense smaller than the X ′
i then we should be able to pack more of the Xi than of

the X ′
i.

Definition 2.1 For two finite measures µ and µ′ on Rd
+ introduce the stochastic order

µ º µ′ :⇐⇒
∫

h dµ ≥
∫

h dµ′ for all decreasing and µ-and µ′-integrable
functions h : Rd

+ → R+.

Here, decreasing means h(x) ≤ h(y) whenever x ≥ y.

Lemma 2.2

µ º µ′ ⇐⇒ µ(A) ≥ µ′(A) for every lower-layer A.

Proof.
“⇒” Take h = 11A, which is decreasing because A is a lower layer.
So µ(A) =

∫
h dµ ≥ ∫

h dµ′ = µ(A′).
“⇐” Let h be a decreasing and µ-and µ′-integrable function from Rd

+ to R+ and let
µ(A) ≥ µ′(A) for every lower-layer A. Transforming measure (compare [1]: Bauer, Maß-
theorie, Satz 23.8) we get

∫

Rd
+

h(x) dµ(x) =

∞∫

0

µ({h ≥ t}) dt.

As h is decreasing, the sets {h ≥ t} are lower-layers and µ(h ≥ t) ≥ µ′(h ≥ t). We get
∫

h dµ =
∫ ∞

0
µ({h ≥ t}) dt ≥

∫ ∞

0
µ′({h ≥ t}) dt =

∫
h dµ′.

2
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Remark: In the one-dimensional case d = 1, µ º µ′ is equivalent to the distribution
function of µ being pointwise greater than or equal the distribution function of µ′, since
the one-dimensional lower-layers are intervals [0, a) or [0, a]. For d ≥ 2 this is a stronger
assumption than this inequality between the distribution functions.

Lemma 2.3 (monotonicity lemma)

(1) Optn(µ, c) is monotone in c, i.e.

c ≥ c′ ⇒ Optn(µ, c) ≥ Optn(µ, c′) (6)

for all probability measures µ on Q.

(2) Optn(µ, c) is monotone in µ, i.e.

µ º µ′ ⇒ Optn(µ, c) ≥ Optn(µ′, c) (7)

for all c ∈ Rd
+.

Remark: Of course, Optn(µ, c) is monotone in n, too.
The lemma remains valid for a measure µ with µ(Rd

+) < 1.

Proof.
(1) Straightforward induction on n using equation (5)

(The case c− x 6≥ 0 has to be treated separately.)

(2) Base case: n = 1, follows from (3).
Induction hypothesis: (7) holds for all c ∈ Rd

+.

Optn+1(µ, c) =
∫

Rd
+

h(x)dµ(x), (8)

where
h(x) := max{Optn(µ, c), 1 + Optn(µ, c− x)}

is a function from Q to the nonnegative real numbers. g is a decreasing because of
(6). By the definition of the stochastic order we have

∫
h dµ ≥ ∫

h dµ′. We conclude

Optn+1(µ, c) ≥
∫

Rd
+

max{Optn(µ, c), 1 + Optn(µ, c− x)} dµ′(x)

≥
∫

Rd
+

max{Optn(µ′, c), 1 + Optn(µ′, c− x)} dµ′(x) (9)

= Optn+1(µ
′, c),

where the step (9) follows from the induction hypothesis.

2
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Now, we see that the optimal policy described above is of ’threshold’ type. Let An(c) be
the set of all x such that (4) holds. Call An(c) the acceptance region. Because of (6) the
acceptance region An(c) is a lower-layer. We will state this as

Theorem 2.4 (Existence of an optimal strategy) There is an optimal policy Ψ with
E(Ψ) = Optn(µ, c), such that the acceptance regions {xj ∈ Q |Ψj(x1, . . . , xj) = 1} are
lower-layers which depend on x1, x2, . . . , xj−1 only through the sum of the variables selected

so far:
j−1∑
k=1

Ψkxk.

2.2 Preliminary asymptotical results

In general, we cannot determine Optn(µ, c) exactly. Instead, we we will now focus on its
asymptotic behavior when n →∞.
Let us first make a standardization of the units. Instead of using a general c = (c1, . . . , cd)
as upper bound on the sum of the selected items, we will use 1 = (1, 1, . . . , 1). We can
always transform the problem with general c to the one with c = 1 by considering items
with sizes X ′

j measured on a different scale:

X ′ = (X ′
1, X

′
2, . . .), X

(i)
j

′
:= X

(i)
j /ci, i = 1, 2, . . . , d, j = 1, 2, . . . .

From now on let Q denote the unit cube [0,1]d. We will now write Optn(µ) for Optn(µ, c).

2.2.1 A coarse look on the asymptotics

Lemma 2.5 Let µ(A) > 0 for any neighborhood A of 0. Then

lim
n→∞Optn(µ) = ∞.

Proof. Optn(µ) is monotonically increasing in n so the limit exists. Let M > 1 be
arbitrary, let A := [0, 1

M 1] and consider the policy Ψ which selects all items with sizes in
A unless the sum of the selected items would exceed 1. Then

Optn(µ) ≥ E(Ψ) ≥ M P
( n∑

j=1

11{Xj∈A} ≥ M
) → M,

since
∑n

j=1 11{Xj∈A} is binomially distributed with parameters n and µ(A) > 0.
Therefore lim

n→∞Optn(µ) ≥ M and the claim follows as M was arbitrary.

2
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If there is a neighborhood A of 0 in Q such that µ(A) = 0, we can almost surely only select
a bounded number of items. As this case doesn’t seem very interesting in our asymptotical
analysis we will exclude it from further consideration. From now on let

µ(A) > 0 for any neighborhood A of 0. (10)

For the asymptotic behavior of Optn(µ) only the values of µ(A) for neighborhoods of 0
play a role.

Lemma 2.6 If µ1 and µ2 are equal in a neighborhood U of 0, i.e. µ1(A) = µ2(A) for all
A ⊂ U , then

Optn(µ1) ∼ Optn(µ2).

Proof. Let Eµ(Ψ) denote the expected number of selected items of policy Ψ with respect
to a measure µ.
Let Ψ ∈ P be an optimal policy with respect to the measure µ1. The number of items
selected by Ψ which have a size that is not in U is bounded by some constant M , which
depends only on U .
Define Ψ′ by Ψ′

j := Ψj11{Xj∈U}. Ψ′ selects all the items Xj ∈ U that would be selected by
Ψ. Therefore Eµ1(Ψ

′) ≥ Eµ1(Ψ)−M .
Although Ψ′ does not select items not in U , it still can depend on those items because Ψ
depended on them. But there is a policy Φ which is at least as good as Ψ′ with respect to
µ1 and does neither select items not in U nor depend on them.
We can see that by letting P ′ be the set of all admissible online policies which only select
items j which have a size Xj ∈ U . Like in the preceeding section one can see that for
any measure there is an optimal policy Φ under all policies in P ′, too. And Φ depends on
X1, X2, · · · , Xj only through the sum of the items selected up to time j. In particular Φj

does not depend on the sizes of the items not in U which haven’t been selected.
As Ψ′ ∈ P we get Eµ1(Ψ

′) ≤ Eµ1(Φ). But Φ does not depend on the sizes of the items not
in U and since µ1 and µ2 are equal on U we have Eµ1(Φ) = Eµ2(Φ).
We conclude

Optn(µ1) = Eµ1(Ψ) ≤ Eµ1(Ψ
′) + M ≤ Eµ1(Φ) + M = Eµ2(Φ) + M ≤ Optn(µ2) + M

as Φ is only suboptimal for µ2.
Since the situation is symmetric in µ1 and µ2 we get

|Optn(µ1)−Optn(µ2)| ≤ M.

Dividing this inequality by Optn(µ2) and letting n → ∞ now gives the result since
Optn(µ2) →∞ by lemma 2.5.

2
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2.2.2 Poissonization of the selection problem

So far we had a fixed number n ∈ N of items at our disposal to be packed. It will be of
some use later to make this discrete parameter n to a continuous parameter by the means
of Poissonization.

Consider a homogeneous Poisson process {L(t), t ≥ 0} on R+ with rate 1 that is indepen-
dent of the sequence of items X. Let Tj be the arrival time of the j-th event in the Poisson
process. We observe (X1, T1), (X2, T2), . . . sequentially and select the Xj ’s online under
the constraint that the sum of the selected variables must not exceed c. But we cannot
select Xj if Tj > t. In other words the selection process stops at time t. Our decision
whether we select Xj (i.e. Ψj = 1) now can depend on (X1, T1), (X2, T2), . . . , (Xj , Tj).
An admissible online selection policy here is a function
Ψ = (Ψ1,Ψ2, . . .) :

∏
N

(Rd
+ ×R+) → {0, 1}N,

such that for z = ((x1, t1), (x2, t2), . . .) in the domain of Ψ

Ψj(z) = Ψj((x1, t1), (x2, t2), . . . , (xj , tj)) (j = 1, 2, . . .)

and the sum constraint ∞∑

j=1

Ψj(z) xj ≤ c

is satisfied for all z in the domain of Ψ. Define

E(Ψ) := E
∑

j: Tj≤t

Ψj .

And let
u(µ, c, t) := sup E(Ψ) (11)

where Ψ ranges in the supremum over all admissible online selection policies. If c = 1 we
will just write u(µ, t) and usually u(t) when it is clear which measure we use.

At the time the j-th event of the Poisson process occurs the j-th item Xj is presented to
us an we have to decide whether to select it. We neither know the sizes Xi for i > j nor
do we know how many events will occur in the future. But we do know the current time
and the time left up to t. We know the past and the distributions.
u(t) is the maximal expected number of selected items up to time t.

N := L(t), the number of events up to time t, is Poisson distributed with mean t. As
the variance of N is also t, we get by Chebyshev’s inequality that P (|N/t − 1| > ε) ≤
1/(ε2t) → 0 as t →∞. So for large t, N is distributed sharpely about its mean t and we
can hope that the maximal expected number of selected items then is similar in the two
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cases: N ≡ n and the Poissonized problem with time horizont n.

What is so useful about u(t) instead of Optn is that the first is accessible by analytical
methods. We will make use of that in section 2.5.1.

Lemma 2.7
u(t)

t
is decreasing in t. (12)

Proof. Let 0 ≤ p ≤ 1 and suppose each of the items j (j = 1, 2, . . .) is marked ’valid’ with
probability p independently of the rest of the process. And when counting the number of
selected items only valid items are considered.
We will make the following Gedanken experiment. There are two players A and B, who
have to select the items up to time t coming from a Poisson process with rate 1. The
players play their policies independently from each other. Player A just plays an optimal
policy which maximizes the expected total number of selected items, valid or not. (She
doesn’t even know that there are invalid items.)
Player B sees the mark on an item before she must decide if she selects it.
Clearly, the maximal expected number of selected valid items of player B will be as least
as large as the expected number of selected valid items of player A, because B could choose
to apply the same strategy as A and ignore the marks.
The expected number of selected items of player A is u(t) and thus her expected number
of selected valid items is p u(t), because the marks were given independently of the rest of
the process with probability p.
For Player B, there is no sense to pick invalid items because they only occupy space and
do not add to the performance. She will simply ignore any invalid items and consider only
the valid items in her selection process. The thinned counting process of the valid items is
again a Poisson process on [0, t]. It has rate p. This selection problem is equivalent to the
one for a Poisson process with rate 1 on [0, pt] - we just rescale the time. So the expected
number of selected valid items of player A is u(pt).
We conclude

u(pt) ≥ p u(t),

which implies
u(pt)

pt
≥ u(t)

t
.

As we have that for all t > 0 and 0 ≤ p ≤ 1 the claim follows.

2

We are now ready to prove the conjecture from the introduction to this subsection. Fix µ
and let

an := Optn(µ).
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Theorem 2.8 The maximal expected number of selected items is asymptotically the same
in the cases N ≡ n and the Poissonized problem with time horizont n:

an ∼ u(n) (13)

Proof. We prove (13) in two parts:
(a) an

<∼u(n) and
(b) an

>∼u(n).
For part (a) take ε > 0 and set t := n(1 + ε). Consider an optimal strategy Ψ for the
problem with fixed number n of items. Let N ∼ Poi(t), then we get with Chebyshev’s
inequality

P (N < n) ≤ P (|N − t| ≥ nε) ≤ n(1− ε)/(nε)2 → 0 as n →∞. (14)

In the Poissonized packing problem with N ∼ Poi(t) one could apply this policy Ψ to the
first n incoming items and ignore all items thereafter. If N < n the selection simply stops
with the last item. This admissible strategy will get at least anP (N ≥ n) items on the
average but is still suboptimal in the Poissonized problem. So anP (N ≥ n) ≤ u(t). We
get

an

u(n)
=

an

u(t)
u(t)
u(n)

≤ 1
P (N ≥ n)

t

n
, since

u(t)
u(n)

≤ t

n
by lemma 2.7

=
1 + ε

P (N ≥ n)
→ 1 + ε by (14)

So lim sup
n

an
u(n) ≤ 1 + ε for all ε > 0, and (a) follows.

For (b) we need to bound u(t) appropriately from above. This time, let t := n(1− ε) and
0 < ε < 1. Let N be the number of items in the Poissonized problem with time t. Suppose
now, we knew N in advance. N is still random but the value is revealed to us in advance.
Since the item sizes are independent of N , the maximal expected number of selected items
would be E aN . Because we would have more information than in the Poissonized packing
problem, we would be able to pack at least as much on the average. So

u(t) ≤ E aN .

Now, conditioning on whether N ≤ n we get

u(t) ≤ E [aN |N ≤ n] P (N ≤ n) + E [aN |N > n] P (N > n)
≤ an P (N ≤ n) + E [N |N > n] P (N > n) , since ak ↑ and ak ≤ k. (15)

We have
P (N > n) = O(1/n) (16)
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just as in part (a).
To bound E [N |N > n] (we only need here that it is O(n)) note that, as N is a Poisson
random variable with mean t, we have P (N = k) = t

kP (N = k − 1) for k = 1, 2, . . .. So
the same holds for the conditional distribution of N given N > n:

P (N = k |N > n) =
t

k
P (N = k − 1 |N > n) k > n + 1.

Set q := 1− ε and observe that t/k ≤ 1− ε = q for k > n + 1 to get

P (N = k |N > n) ≤ qP (N = k − 1 |N > n) k > n + 1.

Iterating this inequality we get

P (N = n + 1 + k |N > n) ≤ qkP (N = n + 1 |N > n) k = 0, 1, 2, . . . . (17)

We can now compare the conditional probability distribution of N − (n + 1) given N > n
with a geometric distribution with parameter p = 1− q = ε

E [N − (n + 1) |N > n] =
∞∑

k=1

kP (N − (n + 1) = k |N > n)

≤
∞∑

k=1

kqkP (N = n + 1 |N > n) (by (17))

≤
∞∑

k=1

kqk =
1
p2

=
1
ε2

So E [N |N > n] ≤ n + 1 + 1/ε2 indeed is O(n). Together with (16) and (15) this yields

an

u(t)
≥ (

1− O(1)
u(t)

)/
P (N ≤ n).

u(t) →∞ using part (a) and ak →∞ (holds by lemma 2.5). So

lim inf
n

an

u(t)
≥ 1

and

lim inf
n

an

u(n)
=

an

u(t)
u(t)
u(n)

≥ lim inf
n

u(t)
u(n)

lemma
2.7≥ lim

n→∞
t

n
= 1− ε.

As ε > 0 was arbitrarily small, (b) follows.

2

With lemma 2.6 we have seen that the asymptotic behavior of Optn(µ) depends only on µ
in a neighborhood of 0. We will now see that the asymptotical behavior of Optn(µ) even
only depends on ’the asymptotic behavior of µ’ in a neighborhood of 0.
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Theorem 2.9 Let µ1 = f1λ and µ2 = f2λ be two probability measures on Rd
+ with densities

f1 and f2 with respect to the Lebesgue measure λ. And let

f1(x) ∼ f2(x) as ‖x‖ → 0.

Then

Optn(µ1) ∼ Optn(µ2) (n →∞).

Proof. Let 0 < a < 1 be given. (We will let a ↑ 1 later). Since f1(x) ∼ f2(x) there is a
neighborhood U of 0 such that f2(x) ≥ af1(x) for all x ∈ U . Define the measure

µ := (f111U )λ,

i.e. µ is like µ1 but ’restricted’ to U . Then µ2 = f2λ Â (af111U )λ = aµ. So we can apply
the second part of the monotonicity lemma 2.3 to get

Optn(µ2) ≥ Optn(aµ)
∼ u(aµ, n) because of theorem 2.8.

Now, observe that in the Poissonized problem multiplying the measure by a factor 0 <
a < 1 has the same effect on the maximal expected number of selected items as scaling
the time with that factor:

u(aµ, c, t) = (µ, c, at). (18)

Using theorem 4.6 about ’thinning’ a Poisson process we see that in both cases the items i
such that Xi ∈ Q come from a homogenuous Poisson process and their number is Poisson
distributed with mean atµ(Q). The conditional distribution of Xi given Xi ∈ Q is the
same, too, in both cases, namely 1

µ(Q)µ. And these two distributions solely determine the
maximal expected number of selected items. Apply this (for c = 1) to get

Optn(µ2) >∼ u(µ, an)
≥ au(µ, n) (by lemma 2.7)
∼ aOptn(µ) (by theorem 2.8)
∼ aOptn(µ1) (by lemma 2.6)

So we have Optn(µ2) >∼ aOptn(µ1) for a arbitrarily close to 1, which implies
Optn(µ2) >∼Optn(µ1). By symmetry we conclude Optn(µ1) >∼Optn(µ2) and the claim
follows.

2
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2.3 Sets of maximal volume under certain restrictions

Our aim still is to determine Optn(µ) asymptotically. And give a simple policy which
asymptotically achieves the optimum. We have seen in section 2.1 that for the optimal
strategy there are acceptance regions Ak(c), where k is the number of items still to inspect
and c is the space left. The simplest strategy seems to choose a fixed acceptance region
A and accept all the items with sizes in A as long as allowed by the sum constraint. We
call this a stationary strategy. If there was no constraint the expected number of selected
items would be nµ(A) and the expected space needed would be nE [X111A(X1)]. It seems
natural to try to use an A such that nµ(A) is maximal under all A’s such that the expected
space needed is less than or equal to 1. It will turn out that such an A (which depends
on n) indeed gives an asymptotically optimal admissible stragety when n →∞.
In this section we will deal with the problem of determining the shape of A. Although
only very little of the results of this section is actually needed for the rest of the chapter
(the optimality of the region is not needed) we included it. Partly, because the subject
deserves its own interest and partly because the proof of the result we do need later follows
the same line.

2.3.1 Problem and notations

We are given a probability measure µ on the d-dimensional unit cube Q = [0, 1]d.

Definition 2.10 By a simplicial section we mean a set {x ∈ Q | 〈x, θ〉 ≤ 1}, where θ ≥ 0.

Figure 5 on page 31 shows one.
Assume the random vector Z has law µ. For a measurable set A ⊂ Q let

g(A) := E[Z 11A(Z)] =
∫

A
x dµ(x).

And let c(A) for µ(A) > 0 denote the barycenter (center of gravity) of A with respect to
µ, i.e.

c(A) := E[Z |Z ∈ A] =
g(A)
µ(A)

=
1

µ(A)

∫

A
x dµ(x).

The problem of this section will be an optimization problem:

(P1) maximize µ(A) on {A ⊂ Q |g(A) ≤ ρ, A measurable}
for some ρ > 0.
The solution of this problem will also give us a solution to the problem

(P2) maximize µ(A) on {A ⊂ Q | c(A) ≤ τ , A measurable}
for some τ > 0.
Problem (P2) has also been treated in [12]:
Mallows, Nair, Shepp and Vardi (1985), Optimal Sequential Selection of Secretaries
Unfortunately, their proof, attributed to Andrew Odlyzko, seems to have a gap when
d > 2. We will use a different approach here.
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2.3.2 Counterexamples

In the paper mentioned above are the following two lemmas

Lemma 2.11 For any A there is a lower-layer A′ with c(A′) ≤ c(A) and µ(A′) ≥ µ(A).

Lemma 2.12 For any lower-layer A there is a simplicial section A′ with c(A′) ≤ c(A) and
µ(A′) ≥ µ(A).

The cited paper claims that they are right for an arbitrary distribution µ. However, both
statements fail in the case where the measures have atoms. The same statements with c
replaced by g are false in general, too, for arbitrary distributions µ. It will turn out later
that they are indeed correct for a continuous measure µ (with c and with g).
Figures 1 and 2 show counterexamples for a non-continuous measure.

Let A contain a and c but not b. Let µ be the
probability measure which puts the masses ε, 1 −
2ε, ε onto the points a,b and c, respectively, for
some small ε. Then there is no lower-layer A′ with
µ(A′) ≥ µ(A) and c(A′) ≤ c(A).
Every lower-layer A′ with µ(A′) ≥ µ(A) would have
to contain b and thus had a larger center of gravity
than A: c(A′) > c(A), which is a contradiction and
also shows that then
g(A′) = µ(A′)c(A′) > µ(A)c(A) = g(A).
So there is no lower-layer A′ with µ(A′) ≥ µ(A)
and g(A′) ≤ g(A), either.

A

a

b

c

Figure 1: counterexample 1

Let A be the square shown in the figure. Let µ
be the probability measure which puts the masses
1
3(1 − ε) onto the points a,b and c, and the mass
ε on point d, for some small ε.
Then there is no simplicial section A′ with
µ(A′) ≥ µ(A) and c(A′) ≤ c(A).
Every simplicial section A′ with µ(A′) ≥ µ(A)
would have to contain a and at least one of b and
c and thus had a center of gravity c(A′) which is
in at least one coordinate larger than c(A) (which
is very close to a when ε is small): c(A′) 6≤ c(A).
This also shows that then
g(A′) = µ(A′) c(A′) 6≤ µ(A) c(A) = g(A).
So there is no simplicial section A with
µ(A′) ≥ µ(A) and g(A′) ≤ g(A), either.

A

a b

c

d

Figure 2: counterexample 2
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2.3.3 Existence

In this subsection we will prove that above optimization problems have a solution. Let
µ be a continuous measure with density f . The idea is to take a sequence of subsets An

of Q which satisfy the restriction and approach the optimal value, then to approximate
these with lower-layers Ln. And then use the ’smoothness’ of lower-layers to prove there
is a ’convergent’ subsequence of this sequence (Ln). The limes will then be a solution.

Introduce the pseudometric dµ on the set of Borel-measurable sets

dµ(A,B) := µ(A ¦B) A,B ∈ B(Rd),

where ¦ denotes the symmetric difference.

Lemma 2.13 The mappings g : B(Rd
+) → Rd and c : B(Rd

+) \ N → Rd are continuous
with respect to dµ.

Proof. Let A,B ∈ B(Rd
+) and let i ∈ {1, 2, · · · , d}. Then

|gi(A)− gi(B)| = ∣∣
∫

A\B

xi dµ(x)−
∫

B\A

xi dµ(x)
∣∣ ≤

∫

A¦B
|xi| dµ(x) ≤ µ(A ¦B) = dµ(A,B).

So
‖g(A)− g(B)‖∞ ≤ dµ(A,B) (19)

and thus g is continuous. The continuity of c(A) = 1
µ(A)g(A) follows since the mapping µ

is of course continuous with respect to dµ, too.

2

Lemma 2.14 Let µ be an absolutely continuous measure on Q.

(a) For every A ⊂ Q and every ε > 0 there is a lower-layer L ⊂ Q such that µ(L) ≥ µ(A)− ε
and g(L) ≤ g(A) + ε1.

(b) For every A ⊂ Q with µ(A) 6= 0 and every ε > 0 there is a lower-layer L ⊂ Q such that
µ(L) ≥ µ(A)− ε and c(L) ≤ c(A) + ε1.

Proof. We will first show that (a) implies (b). And then prove (a).
(a) ⇒ (b): Let (a) be true, let ε > 0 be given and L be so that µ(L) ≥ µ(A) − δ and
g(L) ≤ g(A) + δ1. We will choose δ with ε ≥ δ > 0 later. Then

c(L) =
g(L)
µ(L)

≤ g(A) + δ1
µ(A)− δ

∗≤ g(A)
µ(A)

+ ε1 = c(A) + ε1,

where inequality (∗) holds when we choose δ > 0 small enough, which is possible since
µ(A) > 0 and the left hand side of (∗) tends to g(A)/µ(A) as δ → 0. Also µ(L) ≥ µ(A)−ε
as δ ≤ ε.
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(a) We will first construct a B with µ(B) = µ(A) and g(B) ≤ g(A) such that B is close to
a lower-layer with respect to dµ. The idea is to turn A into a set B by making ’successive
improvements’.
Let A1 := A and let Ak already be defined for some k ≥ 1. For y ∈ Q let

δy(Ak) := min {µ(Ac
k ∩ [0,y]), µ(Ak ∩ [y,1])}. (20)

1

1

Α k E

D

y

1

1

A
k+1

y

,0 y ][

y , ]1[

Figure 3: Example for the ’improvement’ of Ak

See also figure 3. And choose y so that δy(Ak) is maximal. This is possible since δy is
continuous in y and Q is compact. Now, we choose D ⊂ Ac

k ∩ [0,y]) and E ⊂ Ak ∩ [y,1]
such that µ(D) = µ(E) = δy(Ak). Again, this is possible because µ is continuous.
Finally, define Ak+1 := (Ak ∪D) \E.
Graphically, this means we have moved the mass δy(Ak) down (in each coordinate) from
E to D. Since D and Ak are disjoint and E ⊂ Ak we get µ(Ak+1) = µ(Ak). We also get

g(Ak)− g(Ak+1) =
∫

E
x dx−

∫

D
x dx ≥ 0,

since D ≤ y ≤ E and µ(E) = µ(D).
We would like to continue this process up to some n such that δy(An) < ε′ for some given,
arbitrarily small ε′ > 0. It is true that δy(Ak+1) ≤ δy(Ak) but this alone doesn’t mean
that δy(An) < ε′, eventually. Using the continuity of µ we will show that if δy(Ak) ≥ ε′

then 〈g,1〉 = g1+· · ·+gd will decrease each step by an amount that is bounded from below
by a constant. But as 〈g,1〉 is bounded from below by 0 this means that δy(An) < ε′ for
some n.
Let ε′ > 0 be given and let δy(Ak) ≥ ε′. As µ is continuous with respect to Lebesgue
measure λ there is a constant δ > 0 such that µ(C) < ε′/2 for all C ⊂ Q with λ(C) < δ.
Let ∆s be the simplex {x ≥ y | 〈x,1〉 ≤ 〈y,1〉 + s}. Now, choose s > 0 so small that
λ(∆s) < δ and observe that it doesn’t depend on y. Then µ(∆s) < ε′/2.
We conclude that

µ(E ∩∆c
s) = µ(E)− µ(E ∩∆s) ≥ δy − µ(∆s) ≥ ε′/2. (21)
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Now, we can bound

〈g(Ak),1〉−
〈g(Ak+1),1〉 =

∫

E
〈x,1〉 dµ(x)−

∫

D
〈x,1〉 dµ(x)

≥
∫

E∩∆c
s

〈x,1〉 dµ(x) +
∫

E∩∆s

〈x,1〉 dµ(x)− µ(D) 〈y,1〉 (22)

≥ µ(E ∩∆c
s)(〈y,1〉+ s) + µ(E ∩∆s) 〈y,1〉 − µ(D) 〈y,1〉 (23)

≥ (µ(E)− µ(D)︸ ︷︷ ︸
=0

) 〈y,1〉+ sµ(E ∩∆c
s)

≥ sε′/2,

where (22) holds since D ≤ y and (23) holds since for x ∈ {E ∩ ∆c
s} we have 〈x,1〉 >

〈y,1〉+ s by definition of ∆s and since E ≥ y.
The constant sε′/2 > 0 doesn’t depend on Ak. So we can’t have δy(Ak) ≥ ε′ for all k,
because then we would have 〈g(Ak),1〉 < 0 eventually, which is impossible. We must have
δy(An) < ε′ for n large enough.
Set B := An. Then µ(B) = µ(A), g(B) ≤ g(A) and δy(B) < ε′ for all y ∈ Q.

Now, let ε > 0 be given. Let m ∈ N be so large that λ(C) ≤ d/m implies µ(C) < ε/3,
which again is possible since µ is continuous. Let ε′ := ε

3md and B be as above be such
that δy(B) < ε′ for all y ∈ Q.
In order to define L introduce the following partition of [0,1[ which is equal to Q up to a
set of measure 0. Divide [0,1[ up into md equal subcubes Qi, i ∈ I := {1, 2, · · · ,md}. Let
Qi := [qi,qi + 1

m1[ and the qi’s in Q be so that {qi | i ∈ I} = {0, 1
m , 2

m , · · · , m−1
m }d.

Let
L :=

⋃

i∈J

Qi with J := {i ∈ I |µ([qi,1[ ∩B) ≥ ε′}.

By definition, L is a lower-layer: If Qi ⊂ L and Qj is below Qi in the sense that qj ≤ qi

then µ([qj ,1[ ∩B) ≥ µ([qi,1[ ∩B) ≥ ε′. So Qj ⊂ L, too.
Now, we prove that µ(L ¦B) < ε using µ(L ¦B) = µ(B \L) + µ(L \B) and bounding the
two terms separately.

µ(B \ L) = µ(B ∩ Lc) = µ(
⋃

i∈I\J
Qi ∩B) < mdε′ = ε/3, (24)

since for i /∈ J we have µ(Qi ∩B) ≤ µ([qi,1[ ∩B) < ε′.
To bound the other part, first introduce

R := {i ∈ J |µ([qi +
1
m

1,1[ ∩B) < ε′}.

R is the set of all indexes i of cubes Qi which lie in L at the ’boundary’ of L and Lc. We
can not get a good bound on µ((L¦B)∩Qi) for i ∈ R but the idea is that this ’boundary’
set is small enough (by our choice of m): We claim that #R ≤ dmd−1.
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The key observation is that if qi = qj + k
m1 for some k ≥ 1, then i and j can’t both be in

R, because j ∈ R implies µ([qi,1[∩B) ≤ µ([qj + 1
m1,1[∩B) < ε′, so i is not even in J ⊃ R.

J \ R

∋

i

I0

__
m} 1

R }i

∋

L

∋

i I \ J

Figure 4: Construction of the lower-layer L

Let I0 := {i ∈ I | ∃l ∈ {1, 2, · · · , d} : q
(l)
i = 0}. For any j ∈ I0 there is at most one

i ∈ R such that qi = qj + k
m1 for some k ≥ 0. But every i ∈ R is covered that way. So

#R ≤ #I0. And #I0 ≤ dmd−1, because for every l ∈ {1, 2, . . . , d} there are at most md−1

qi’s with q
(l)
i = 0. We get

λ(
⋃

i∈R

Qi) ≤ dmd−1 1
md

=
d

m
,

which, by the choice of m, implies

µ(
⋃

i∈R

Qi) ≤ ε/3. (25)

For i ∈ J \ R we have µ([qi + 1
m1,1[ ∩ B) ≥ ε′. But as δy(B) < ε′ for all y ∈ B, in

particular for y = qi + 1
m1 we conclude that µ([0,qi + 1

m1]∩Bc) < ε′. As this set contains
Qi ∩ Bc we get

i ∈ J \R =⇒ µ(Qi ∩ Bc) < ε′. (26)

We are ready to bound

µ(L \B) = µ
( ⋃

i∈J

Qi ∩Bc
)

≤ µ(
⋃

i∈R

Qi) +
∑

i∈J\R
µ(Qi ∩Bc)

≤ ε/3 + mdε′ (because of (25) and (26))
= 2ε/3

(24) and (27) together imply µ(L ¦ B) ≤ ε. So µ(L) ≤ µ(B) + ε = µ(A) + ε. And (19)
from the preceeding lemma implies g(L) ≤ g(B) + ε1 ≤ g(A) + ε1.
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2

A lower-layer A is in particular starlike with respect to the origin, i.e. x ∈ A ⇒ rx ∈
A for 0 ≤ r ≤ 1.
We can describe a starlike region A by a function in polar coordinates if d > 1. Define
the following generalized polar coordinate transformation of the positive (and negative)
orthant

α : M ×R → Rd

(ϕ, r) = (ϕ1, . . . , ϕd−1, r) 7→ x = α(ϕ, r),

where

M := [0,
π

2
]d−1

and

x1 = r cosϕ1

x2 = r sinϕ1 cosϕ2

x3 = r sinϕ1 sinϕ2 cosϕ3

...
xd−1 = r sinϕ1 sinϕ2 · · · sinϕd−2 cosϕd−1

xd = r sinϕ1 sinϕ2 · · · sinϕd−1.

Then x ranges over Rd
+ when r ranges over R+ and ϕ ranges over M .

We know (e.g. by [6]) that the functional determinant

detDα(ϕ, r) = rd−1 sind−2 ϕ1 sind−3 ϕ2 · · · sinϕd−2. (27)

We will need this formula only to see that the functional determinant does not vanish for
r > 0 and ϕ ∈ M◦.
Now, define the function R(ϕ) = sup{r | α(ϕ, r) ∈ A}. Then A ⊂ {α(ϕ, r) | ϕ ∈ M, 0 ≤
r ≤ R(ϕ)} and the two sets differ only by a set of measure 0. We have a one-to-one
correspondence up to sets of measure 0 between the starlike regions in Q and positive
functions in polar coordinates. We will call R the function describing A.

In terms of R the measure µ(A) and the coordinates of g(A) are functionals J(R) and
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Gj(R) (1 ≤ j ≤ d), respectively.

J(R) := µ(A)

=
∫

Rd

11A(x) f(x) dx

=
∫

M×R
11A(α(z)) f(α(z)) | detDα(z)| dz (transf. formula for

Lebesgue integrals)

=
∫

M

R(ϕ)∫

0

f(α(ϕ, r)) | detDα(ϕ, r)| dr dϕ (Fubinis theorem)

=
∫

M

F (ϕ, R(ϕ)) dϕ,

where

F (ϕ, R) :=

R∫

0

f(α(ϕ, r)) | detDα(ϕ, r)| dr. (28)

Similarly,

Gj(R) := gj(A) =
∫

Rd

xj 11A(x) f(x) dx

=
∫

M

Fj(ϕ, R(ϕ))dϕ,

where

Fj(ϕ, R) :=

R∫

0

αj(ϕ, r) f(α(ϕ, r)) | detDα(ϕ, r)| dr. (29)

Lemma 2.15 (Lipschitz for lower-layers) If A ⊂ Q is a lower-layer then the function
R : M → R+ describing A satisfies the Lipschitz condition with respect to the norm ‖ · ‖1 on
Mε := [ε, π

2 − ε]d−1 with a constant k = k(ε) that depends only on ε and not on R.
In other words

β, γ ∈ Mε =⇒ |R(β)−R(γ)| ≤ k ‖β − γ‖1

Proof. Let 1 > ε > 0 be given and set

k :=
d

( ε
2)d

.
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Let β, γ ∈ Mε be arbitrary. Without loss of generality we can assume that R(γ) ≥ R(β).
Set xβ := α(β, R(β)) and xγ := α(γ, R(γ)).
Because A is a lower-layer it is not possible that xγ > xβ, because otherwise there would
be a small δ > 0 such that (1− δ)xγ > (1 + δ)xβ, too, but the first point is in A and the
latter is not.
So there must be a coordinate i such that xγ

i ≤ xβ
i :

R(γ)w(γ) ≤ R(β)w(β) (30)

with w(ϕ) := sinϕ1 sinϕ2 · · · sinϕi−1 cos ∗ϕi.
Letting ∆R := R(γ)−R(β) ≥ 0 we get from (30) that

∆R = R(γ)−R(β) =
R(γ)w(γ)−R(β)w(γ)

w(γ)
≤ R(β)

1
w(γ)

(w(β)− w(γ)), (31)

in which be bound everything separately.
R(β) ≤ d, because A ⊂ [0, 1]d.
Since γj ∈ [ε, π

2 − ε] , for (j = 1, 2, · · · , d), we have sin γj ≥ sin ε > ε/2. We also get
cos γj > ε/2, using cosx = sin(π

2 − x). So w(γ) ≥ ( ε
2)d.

Use the general formula |∏ aj−
∏

bj | ≤
∑ |aj−bj |, which holds for |aj |, |bj | ≤ 1 (j ranges

in the summation and the product over the same finite set.) to conclude

w(β)− w(γ) ≤ | sinβ1 − sin γ1|+ · · ·+ | sinβi−1 − sin γi−1|+ | cos ∗βi − cos ∗γi|
≤ |β1 − γ1|+ · · ·+ |βi − γi|
≤ ‖β − γ‖1.

We conclude ∆R ≤ k‖β − γ‖1, which was to be shown.

2

Lemma 2.16 (Existence of a solution)
Let µ be continuous with respect to the Lebesgue measure λ on Q and let f be a density of
µ such that ‖f‖∞ < ∞.
Then (P1) and (P2) have a solution described by a continuous function in polar coordinates.

Remark: The hypothesis ‖f‖∞ < ∞ will turn out unnecessary for (P1) later (see the
stronger theorem 2.17) but right now it facilitates the proof.

Proof. Let A1, A2, . . . be a sequence of subsets of Q, which ’approaches optimality’ in
(P1). That is g(An) ≤ ρ for all n ∈ N and µ(An) → Opt := sup {µ(A) |A ⊂ Q,g(A) ≤ ρ}
as n → ∞. And let Ln be a sequence of lower-layers such that µ(Ln) ≥ µ(An) − 1

n and
g(Ln) ≤ g(An) + 1

n 1, which exists by lemma 2.14, part (a).
Then

lim inf
n

µ(Ln) ≥ Opt and lim sup
n

gj(Ln) ≤ ρj (j = 1, 2, . . . , d) (32)

∗In case i = d this cosine must be a sine.
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In the same way we get – using part (b) of lemma 2.14 – a sequence of lower-layers L′n
such that

lim inf
n

µ(L′n) ≥ Opt′ and lim sup
n

cj(L′n) ≤ τj (j = 1, 2, . . . , d) (33)

with Opt′ := sup {µ(A) |A ⊂ Q, c(A) ≤ τ}. This is possible since Opt′ > 0, because of
τ > 0 and (10).

Let Rn : M → R+ be the function in polar coordinates describing Ln.
If ε > 0 is given and Mε is like in lemma 2.15 then Rn satisfies the Lipschitz condition
with some constant k, which doesn’t depend on Rn by lemma 2.15.
This means that {R1, R2, . . .} is equicontinuous on Mε: For given ε′ > 0 there is a δ > 0,
namely δ := ε′/k such that for ϕ1,ϕ2 ∈ Mε ‖ϕ1 − ϕ2‖1 < δ implies |Rn(ϕ1)−Rn(ϕ2)|
≤ k‖ϕ1 −ϕ2‖1 ≤ kδ = ε′ for all n ∈ N.
Also every Rn is bounded from below by 0 and from above by d.
We can apply the theorem of Arzelà-Ascoli (see theorem 4.10) to get that Rn contains
a subsequence that converges uniformly on Mε. As ε > 0 was arbitrary, we can choose
ε = 1

k . Let (R1
1, R

1
2, R

1
3, . . .) be a subsequence of (R1, R2, R3 . . .) that converges uniformly

on M1. And if (Rk
n)n∈N is already defined, let (Rk+1

n )n∈N be a subsequence of (Rk
n)n∈N

that converges uniformly on M1/(k+1). Then the diagonal sequence (Rn
n)n∈N converges

pointwise on ]0, π
2 [d−1= M◦ to a function R. Also (Rn

n)n∈N convergences uniformly on
every Mε and the Rn

n are continuous on M◦. Thus R is continuous on M◦ and can be
extended to a continuous function on M . For simplicity, write R̂n := Rn

n, L̂n for the region
described by R̂n and L for the region described by R.
As R̂n → R pointwise on M◦ , we have R̂n → R in L1(M), too, by the theorem of Lebesgue
(|R̂n| is dominated by the constant d).
The latter convergence implies that

µ(L̂n) → µ(L) and g(L̂n) → g(L), (34)

because

|µ(L̂n)− µ(L)| = |J(R̂n − J(R)|
=

∣∣
∫

M
F (ϕ, R̂n(ϕ))− F (ϕ, R(ϕ)) dϕ

∣∣ (with F defined
as in (28))

(35)

≤
∫

M

∣∣
∫ R̂n(ϕ)

R(ϕ)
f(α(ϕ, r)) | detDα(ϕ, r)| dr

∣∣ dϕ (36)

≤
∫

M
|R̂n(ϕ)−R(ϕ)| ‖f‖∞ dd dϕ (37)

= ‖f‖∞ dd ‖R̂n −R‖1 → 0.

The proof for g(L̂n) → g(L) is the same with only a little change: We have |gj(L̂n) −
gj(L)| = |Gj(R̂n) − G(R)|. Then in (35) it must be Fj instead of F , which is defined
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in (29). And in (36) there also is an additional – third – factor αj(ϕ, r) in the inner
integrand, whose absolute value is bounded from above by 1 in (37).
(34) enables us to conclude that L is solution to (P1): As (L̂n) is a subsequence of (Ln)
we can conclude by (32) that

µ(L) ≥ Opt and g(L) ≤ ρ.

With the same argument we also have a subsequence (L̂′n) of (L′n) and a set L′ described
by a continuous function R′ such that

µ(L̂′n) → µ(L′) and g(L̂′n) → g(L′). (38)

Again (33) implies that µ(L′) ≥ Opt′. And as Opt′ > 0 – and therefore µ(L′) > 0, too –
this implies

c(L̂′n) =
g(L̂′n)
µ(L̂′n)

→ g(L′)
µ(L′)

= c(L′).

So, by (33), c(L′) ≤ τ , which proves that L′ is solution to (P2).

2
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2.3.4 Shape of the solution

We will now show that an optimal region Â is a simplicial section up to sets of measure 0.

Theorem 2.17 Given a probability measure µ on Q with a density f with respect to Lebesgue
measure and a ρ > 0 there is a simplicial section Â = {x ∈ Q | 〈x,θ〉 ≤ 1} which soves (P1).
That is, it maximizes µ(A) over all A ⊂ Q which have g(A) ≤ ρ.
Furthermore, for all i ∈ {1, . . . , d} such that the i-th constraint is inactive, i.e. gi(Â) < ρi,
we have θi = 0.
The optimal region is unique up to sets of measure 0.

Proof.
Part 1. First assume that the density f is continuous on Rd, f(x) > 0 for x in Q◦ and
f(x) = 0 for x 6∈ Q. We will later approximate the general density f of µ by continuous
densities like above.
Let Â ⊂ Q be a starlike optimal region given by the continuous function R̂(ϕ). The exis-
tence is ensured by lemma 2.16 as ‖f‖∞ < ∞ in this case. And let A be any (measurable)
starlike region, given by the function R.
We want to apply the generalized Kuhn-Tucker theorem (see theorem (4.4)). Let H be
the vector space of all bounded measurable functions on M .
The optimal solution R̂ miminizes −J(R) (i.e maximizes J(R)) over all R ∈ H satisfying
the constraint

G(R)− ρ ≤ 0.

The fact that H contains functions R which attain negative values or don’t describe a
subset of Q does not bring complications. If R is such that for some ϕ ∈ M α(ϕ, R(ϕ)) 6∈ Q
we can define R∗(ϕ) to be 0 if R(ϕ) is negative and maximal so that α(ϕ, R∗(ϕ)) ∈ Q
if R(ϕ) was too large. Recall that we have f(x) = 0 for x 6∈ Q, so J(R) = J(R∗) and
G(R) = G(R∗).
We have to show that J and G are Gateaux differentiable functionals (see definition 4.3)
on H and that the variations are linear in their increments.
For any R, h ∈ H the Gateaux-variation of J at R with increment h is (if it exists)

δJ(R, h) =
d

dε
J(R + εh)

∣∣∣
ε=0

=
d

dε

∫

M

F (ϕ, R + εh) dϕ

∣∣∣∣
ε=0

. (39)

The integrand F (ϕ, R + εh) is differentiable with respect to ε: For every ϕ the integrand
in the definition of F

f(α(ϕ, r)) | det Dα(ϕ, r)|
is continuous in r, since α, f and detDα(ϕ, r) are continuous. And therefore we get

d

dε
F (ϕ, R + εh) =

∂F

∂R
(ϕ, R + εh) h(ϕ)

= f(α(ϕ, R + εh)) |det Dα(ϕ, R + εh)|h(ϕ),
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which is bounded in ϕ and ε. Therefore we can differentiate in (39) under the integral
sign and get

δJ(R, h) =
∫

M

f(α(ϕ, R)) | detDα(ϕ, R)|h(ϕ) dϕ. (40)

It was essential here that f is continuous.
In the same manner we get the Gateaux-variations of Gj (j = 1, . . . , d):

δGj(R, h) =
∫

M

αj(ϕ, R)f(α(ϕ, R)) | detDα(ϕ, R)|h(ϕ) dϕ. (41)

Since limits in Rd are defined componentwise, we get

δG(R, h) = (δG1(R, h), . . . , δGd(R, h)).

And we see that both δJ(R, h) and δG(R, h) are linear in the increment h.
The last thing we need to show to be able to apply the theorem of Kuhn-Tucker is that
R̂ is a regular point of the inequality G(R)− ρ ≤ 0.
Since G(R̂) ≤ ρ it is sufficient to give an h ∈ H such that

δG(R̂, h) < 0.

Simply choose h(ϕ) = −1 for all ϕ ∈ M . Then formula (41) gives

δGj(R̂, h) = −
∫

M

αj(ϕ, R̂)f(α(ϕ, R̂)) | detDα(ϕ, R̂)| dϕ.

As R̂ is continuous, either Â = Q, Â = {0} or α(ϕ, R̂) ∈ Q◦ for ϕ in a set of positive
Lebesgue measure. If Â = Q, we are done since Q is a simplicial section with θ = 0.
Â = {0} is impossible: µ(Â) must be positive because ρ > 0. In the other case we get
δG(R̂, h) < 0, because then all three factors of the integrand are positive for ϕ in a set of
positive measure.
Now, by theorem (4.4) we have a θ = (θ1, . . . , θd) ≥ 0 such that the Lagrangian

L(R) := 〈G(R)− ρ,θ〉 − J(R)

is stationary at R̂ and 〈
G(R̂)− ρ, θ

〉
= 0. (42)

As R̂ satisfies the constraint G(R̂)− ρ ≤ 0 and as θ ≥ 0, we can conclude by (42) that

θi = 0 if gi(Â) = Gi(R̂) < ρi,
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as desired.
It remains to prove that the simplicial section {x ∈ Q | 〈x,θ〉 ≤ 1} is an optimal region.
By definition of a stationary point we have for every h ∈ H

0 = δL(R̂, h)

=
〈
δG(R̂, h), θ

〉
− δJ(R̂, h)

=
∫

M

(
〈
α(ϕ, R̂), θ

〉
− 1) f(α(ϕ, R̂)) |det Dα(ϕ, R̂)|

︸ ︷︷ ︸
=:l(ϕ)

h(ϕ) dϕ. (43)

Since h is arbitrary, we can use

h(ϕ) :=
{

1 , if l(ϕ) ≥ 0
−1 , if l(ϕ) < 0

Then l h is nonnegative and vanishes exactly when l vanishes. With (43) we conclude that
λ-almost surely l(ϕ) = 0.
For α(ϕ, R̂) ∈ Q◦, f(α(ϕ, R̂)) > 0 by hypothesis and detDα(ϕ, R̂) 6= 0. So, either
α(ϕ, R̂) ∈ ∂Q or 〈

α(ϕ, R̂), θ
〉

= 1

Let K be the hyperplane {x | 〈x, θ〉 = 1}. Then
∂Â ={α(ϕ, R̂(ϕ)) |ϕ ∈ M} ⊂ (K ∩Q) ∪ ∂Q.
So as R̂ is continuous we must have that Â =
{x ∈ Q | 〈x,θ〉 ≤ 1} or Â = Q and that was cor-
rect, too.

K

Q

^
A

Figure 5: The simplicial section Â

Part 2. Now, drop the additional assumptions made in part 1 about the density f of µ.
Let µ have the density f , which still is defined on Rd (that is f(x) = 0 a.s. for x 6∈ Q),
but does not need to be positive on Q◦ or continuous.
Let f1, f2, . . . be a sequence of probability densities such that fn fulfills for every n the
hypothesis of part 1 and the sequence (fn) converges to f with respect to the L1-norm,
i.e.

• fn is continuous

• fn(x) > 0 for x ∈ Q◦, fn(x) = 0 for x 6∈ Q

• ∫ |f − fn| dλ → 0
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We will now show that such an (fn) indeed exists. We will use that the set of continuous
functions is dense with respect to the L1-norm in the set of Lebesgue-integrable functions.
As f ≥ 0 there is a continuous function g : Rd → R , g ≥ 0, such that

∫
|g − f | dλ < ε (44)

for ε := 1/n.
This g doesn’t need to be positive on Q◦, nor vanish on Rd\Q nor be a probability density
(i.e.

∫
g dλ = 1). But we can achieve these properties by making three ’small changes’ to

g.
First, let g′ := g + ε11Q, so g′ is positive on Q◦ and still continuous and bounded on Q◦.
g′ is integrable as g is integrable (this is because of (44)), so we can choose a closed
subsquare B of Q◦ such that

∫

Q\B

f dλ < ε and
∫

Q\B

g′ dλ < ε. (45)

Use the strong version of the lemma of Urysohn to get a continuous function h : Rd → [0, 1]
with h(x) = 0 for x ∈ Rd \Q◦, h(x) = 1 for x ∈ B and h(x) ∈ (0, 1), otherwise.
Now, define g′′ := g′h. g′′ is continuous on Rd again, since g′ was continuous everywhere
except possibly on ∂Q. But g′′ is continuous on ∂Q because h vanishes on ∂Q and g′ is
bounded on Q◦. g′′ still is positive on Q◦ and g′′ vanishes on Rd \ Q so it has all the
desired properties except that m :=

∫
g′′ dλ 6= 1 maybe.

Finally, define fn(x) := 1
mg′′(x). Then fn fulfills what we have claimed. It remains to

show that (fn) converges to f in L1.
We will show in three steps that g′, g′′, and fn are close to f in L1.
Firstly, ∫

|g′ − f | dλ ≤
∫
|g − f | dλ +

∫
|g − g′| dλ ≤ ε + ε = 2ε. (46)

Secondly,

∫
|g′′ − f | dλ =

∫

B

|g′′ − f | dλ +
∫

Q\B

|g′′ − f | dλ +
∫

Rd\Q

|g′′ − f | dλ

≤
∫

B

|g′ − f | dλ +
∫

Q\B

h g′︸︷︷︸
≤g′

+f dλ + 0,

since g′′ = g′ on B and g′′ = f = 0 a.s. on Rd \Q. By (46) and (45)

∫
|g′′ − f | dλ ≤ 2ε + ε + ε = 4ε. (47)
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This also gives us m =
∫

g′′ dλ → 1 as n →∞, because of
∫

f dλ = 1.
Thirdly, ∫

|fn − f | dλ =
∫
| 1
m

g′′ − f | dλ

≤
∫
|g′′ − f |+ |1− 1

m
|g′′ dλ

≤ 4ε + |m− 1| → 0.

Now define µn := fnλ for n = 1, 2, . . .. So µn is a probability measure on Q with density
fn and part 1 is applicable to µn. Also, for brevity, define gn(A) :=

∫
A x dµn(x) and

cn(A) := gn(A)/µn(A) in analogy to g(A) and c(A).
Since fn → f in L1 we now have

µn(A) → µ(A) and gn(A) → g(A) (A ⊂ Q). (48)

Let ∆n = {x | 〈x,θ(n)
〉 ≤ 1} be the simplicial section from part 1. I.e., it is an optimal

region for the measure µn and A = ∆n maximizes µn(A) over gn(A) ≤ ρ.
The idea is that a subsequence of (∆n) converges to a simplicial section ∆ in such a sense
that we can conclude that this ∆ is optimal for the probability measure µ.
We will show that a subsequence of θ(n) converges in Rd with the usual topology to a
vector θ.
First observe that, as ρ > 0, we can show that the θ(n)’s are bounded. Consider the i-th
coordinate of θ(n). By part 1, either θ

(n)
i = 0 or ρi = gn

i (∆n) ≤ cn
i (∆n) ≤

max{xi |x ∈ ∆n} ≤ 1/θ
(n)
i . So θ

(n)
i ≤ 1/ρi. With M := max

i
1/ρi we have θ(n) ∈ [0,M ]d.

Since this set is compact, there is a convergent subsequence of (θ(n)). Let θ ∈ Rd
+ be the

limit. For simplicity with the notations assume that this subsequence was the sequence
(θ(n)) itself. Define

∆ := {x ∈ Q | 〈x, θ〉 ≤ 1}. (49)

We will now show that λ(∆n ¦∆) (the volume of the symmetric difference of the sets ∆n

and ∆ ) converges to 0.
We can assume that θ 6= 0. Otherwise, ∆ = Q and, as θ(n) → θ, for n large enough
θ
(n)
1 + θ

(n)
2 + · · ·+ θ

(n)
d ≤ 1. So that 1 ∈ ∆n, since

〈
1, θ(n)

〉
= θ

(n)
1 + θ

(n)
2 + · · ·+ θ

(n)
d ≤ 1.

But then ∆n = Q, too, and ∆ ¦∆n = ∅ so we are done.
Now, let ‖θ‖, the euclidian norm of θ, be positive. By Cauchy-Schwarz’s inequality
|〈x,θ − θ(n)

〉| ≤ ‖x‖‖θ − θ(n)‖ → 0 uniformly for x ∈ Q. Thus for any ε > 0 there is an
n0 such that for n > n0

| 〈x, θ〉 − 〈
x,θ(n)

〉| < ε (x ∈ Q). (50)

Now, suppose x ∈ ∆ ¦∆n. Then 〈x, θ〉 ≤ 1 and
〈
x,θ(n)

〉
> 1 or the other way around.

Hence, because of (50), we get

∆ ¦∆n ⊂ {x ∈ Q | 〈x, θ〉 ∈ (1− ε, 1 + ε)}
= {x ∈ Q |

〈
x,

θ

‖θ‖
〉
∈ (1− ε

‖θ‖ ,
1 + ε

‖θ‖
)}.
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This is the intersection of Q with the set of all points x which lie between two parallel
hyperplanes with Euclidean distance 2ε/‖θ‖. Because Q is bounded (its diameter is

√
d)

we get

lim sup
n

λ(∆ ¦∆n) ≤ 2ε

‖θ‖
√

d.

Letting ε → 0 this yields
lim

n→∞λ(∆ ¦∆n) = 0.

Since µ is continuous with respect to the Lebesgue measure we also get

lim
n→∞µ(∆ ¦∆n) = 0. (51)

which implies by lemma 2.13 that

g(∆n) → g(∆). (52)

Finally we show that A = ∆ maximizes µ(A) over g(A) ≤ ρ and gi(∆) < ρi ⇒ θi = 0.
Suppose for the sake of contradiction there was an A ⊂ Q with µ(A) > µ(∆) and g(A) ≤ ρ.
Then there also would be an A′ with µ(A) > µ(∆) and g(A) < ρ. This is so because we
simply could take away from A a small subset B ⊂ A: 0 < µ(B) < µ(A) − µ(∆). Then
A′ := A \B would have gi(A′) = gi(A)− ∫

B xi dµ(x) < gi(A) ≤ ρi and µ(A′) > µ(A).
We want to show that then some ∆n could not have been optimal. First observe that

|µ(∆)− µn(∆n)| ≤ |µ(∆)− µ(∆n)|+ |µ(∆n)− µn(∆n)|
≤ µ(∆ ¦∆n) +

∫
|f − fn| dλ

→ 0 (53)

where we used (51) and made use of the choice of fn.
Similarly,

‖g(∆)− gn(∆n)‖ ≤ ‖g(∆)− g(∆n)‖+ ‖g(∆n)− gn(∆n)‖
≤ ‖g(∆)− g(∆n)‖+

∫

∆n

‖(f(x)− fn(x))x‖ dx

≤ ‖g(∆)− g(∆n)‖+
√

d

∫
|f − fn| dλ

→ 0 (54)

because of (52).

Now, define ε := µ(A′)− µ(∆) and choose n so large that

(1) gn(A′) < ρ (possible, since gn(A′) → g(A′) < ρ and by (48))

(2) µn(A′) > µ(A′)− ε
2 (possible by (48))
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(3) µn(∆n) < µ(∆) + ε
2 . (possible by (53))

Then

µn(A′)
(2)
> µ(A′)− ε

2
= µ(∆) +

ε

2
(3)
> µn(∆n),

which contradicts together with (1) the assumption that ∆n was an optimal region for the
measure µn.
And suppose gi(∆) < ρi then g

(n)
i (∆n) < ρi for n large enough, because of (54). This

implies θ
(n)
i = 0 by part 1. So θi = lim

n→∞ θ
(n)
i = 0, too.

It remains to show that the optimal region is unique up to sets of measure 0. Let ∆ be
as in (49) an optimal region and let B be any other optimal region. We will show that
µ(∆ ¦B) = 0.
Suppose µ(∆ ¦B) > 0. Then µ(B \∆) = µ(∆ \B) =: m > 0, as µ(∆) = µ(B).
We have

〈g(B),θ〉 − 〈g(∆),θ〉 =
∫

B\∆

〈x,θ〉 dµ(x)−
∫

∆\B

〈x, θ〉 dµ(x) (55)

But for x ∈ B \∆ we have 〈x, θ〉 > 1 and for x ∈ ∆ \B we have 〈x, θ〉 ≤ 1. So the right
integral is at most m. Plugging this into (55) yields

〈g(B), θ〉 − 〈g(∆), θ〉 ≥
∫

B\∆

〈x, θ〉 − 1︸ ︷︷ ︸
>0

dµ(x) > 0

as µ(B \∆) > 0. We get
〈g(B), θ〉 > 〈g(∆), θ〉 = 〈ρ, θ〉 (56)

where the equation on the right holds because θi = 0 if gi(∆) 6= ρi. But (56) implies that
gi(B) > ρi for some i ∈ {1, . . . , d}, which is a contradiction. So µ(∆ ¦B) = 0.

2

Corollary 2.18 Given a probability measure µ on Q with a density f such that ‖f‖∞ < ∞
and given a τ > 0 there is a simplicial section Â = {x ∈ Q | 〈x, θ〉 ≤ 1} which solves (P2).
That is, it maximizes µ(A) amongst all A ⊂ Q which have c(A) ≤ τ .
For all i such that the i-th constraint is inactive, i.e. ci(Â) < τi, we have θi = 0.
Furthermore, the optimal region is unique up to sets of measure 0.

Proof. Let A be a solution to (P2), i.e. c(A) ≤ τ and whenever c(A′) ≤ τ we have
µ(A′) ≤ µ(A). A exists because of lemma 2.16. We have µ(A) > 0 because τ > 0. Define
ρ > 0 by

ρ := µ(A)τ ∈ Q.
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We will show that A also maximizes µ(A) under the restriction g(A) ≤ ρ.
First note that A satisfies this restriction since g(A) = µ(A)c(A) ≤ µ(A)τ = ρ.
Now, let A′ be any set such that g(A′) ≤ ρ. Then we have

µ(A′)c(A′) = g(A′)
≤ ρ

µ(A′)c(A′) = µ(A)τ (57)

Now, if c(A′) ≤ τ , we have µ(A′) ≤ µ(A) since µ(A) was maximal under that condition.
And if c(A′) 6≤ τ there is at least one coordinate i such that ci(A′) > τi. But then the
i-th coordinate of inequality (57) tells us that µ(A′) ≤ µ(A).
Since A′ was arbitrary, A also maximizes µ(A) under the restriction g(A) ≤ ρ.
Because the solution to that problem is unique and a lower-layer, by theorem 2.17, we get
that A is a simplicial section Â = {x ∈ Q | 〈x, θ〉 ≤ 1} up to sets of measure 0. And since
µ(A) = µ(Â) we have θi = 0 for each i such that gi(Â) < ρi = µ(Â)τi. Or equivalently,

θi = 0 if ci(Â) < τi.

2

Remark: Since a simplicial section is in particular a lower-layer corollary 2.18 shows that
lemmas 2.11 and 2.12 are indeed correct for an absolutely continuous measure µ.
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2.4 Asymptotical Solution

2.4.1 Preparatory lemmas

These two lemmas will be needed in the proof of the main result in the next subsection.

Lemma 2.19 Let A ⊂ Q be such that ci(A) ≤ s for (i = 1, 2, . . . , d).
Define A′ := {x ∈ A |x ≤ s2/31}. Then

µ(A′)
µ(A)

≥ 1− d s1/3 (58)

Remark: We will need this lemma for small s and a simplicial section A = ∆. See also
figure 6 on page 42.
Proof. For i = 1, . . . , d we have

s ≥ ci(A)

=
1

µ(A)

∫

A

xi dµ(x)

≥ 1
µ(A)

∫

A∩{xi≥s2/3}

xi dµ(x)

≥ 1
µ(A)

s2/3 µ(A ∩ {xi ≥ s2/3}).

This implies
µ(A ∩ {xi ≥ s2/3})

µ(A)
≤ s

1
3 . (59)

Now, we get

1− µ(A′)
µ(A)

=
µ(A \A′)

µ(A)

≤
d∑

i=1

µ(A ∩ {xi ≥ s2/3})
µ(A)

≤ d s1/3 (by 59).

2

Lemma 2.20 (a Chernoff bound) Let Z1, Z2, . . . , Zn be independent random variables
with E [Z1] ≤ 1

n and

0 ≤ Zi ≤ a.
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Then we have for any natural number m < n

P (
m∑

i=1

Zi > 1) ≤ exp [− δ2

2a
]

with δ := 1− m
n .

Proof. We have for any t > 0

p := P (
m∑

i=1
Zi > 1) ≤ e−tE [ exp(t

m∑
i=1

Zi)] (Markov’s inequality)

= e−t
m∏

i=1
E [ etZi ]. (independence)

1+x 
ta

a

- 1e

e tx

1

a0 x

e ta

Observe that, as the function x 7→ etx is convex,
we have etx ≤ 1 + x 1

a(eta − 1) for 0 ≤ x ≤ a .

Plug in Zi for x to get

p ≤ e−t
m∏

i=1

[1 +
E [Zi]

a
(eta − 1)]

= e−t [1 + 1
an(eta − 1)]m (since E [Zi] ≤ 1

n)
≤ exp(−t) exp( m

an(eta − 1)) (since 1 + x ≤ ex)

≤ exp
[1
a
((1− δ)(eta − 1)− ta)

]

Since t > 0 was arbitrary we can put t = − 1
a ln(1− δ) > 0 and get

p ≤ exp
[1
a
((1− δ)(

1
1− δ

− 1) + ln(1− δ))
]

≤ exp
[1
a
(δ + ln(1− δ))

]

Using the power series of ln we get for 0 ≤ x < 1

ln(1− x) = −x− x2

2
− x3

3
− · · · ≤ −x− x2

2
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Apply this to x = δ to get

p ≤ exp
[1
a
(δ − δ − δ2

2
)
]

= exp [− δ2

2a
]

2

2.4.2 Result

We will derive asymptotic results about Optn for n →∞ in this section. This is the main
result of this chapter.
Again, consider the prophet who is to select the variables. He knows the values of
X1, . . . , Xn in advance. In this case of fixed n his best policy is clear ; he could ’sim-
ply’ select the largest subset I of {1, 2, . . . , n} such that

∑
i∈I Xi ≤ 1. The expected

number of selected variables by the prophet then is

Prophn := E [max{#I |
∑

i∈I

Xi ≤ 1}].

We know Optn ≤ Prophn but it turns out that for large n his policy is not much better
than the optimal online selection policy:

Theorem 2.21 Let µ be an absolutely continuous probability measure on Q = [0,1]. Let
∆ = ∆(n) be a simplicial section {x ∈ Q | 〈x,θ〉 ≤ 1} such that gi(∆) ≤ 1/n and θi = 0
when gi(∆) < 1/n. Then

(1)

Optn ∼ Prophn ∼ nµ(∆).

(2) Let

s :=
1

nµ(∆)
(60)

and ∆′ := {x ∈ ∆ |x ≤ s2/31}. Let Ψ be the following policy (which depends on n).
Accept Xj if Xj ∈ ∆′ and the sum of the variables selected so far plus Xj is still less
than or equal to 1. But if this sum exceeds 1 in any coordinate then reject Xj and all
subsequent variables Xj+1, Xj+2, . . ..
Then Ψ is asymptotically optimal, i.e. E(Ψ) ∼ Optn.
Furthermore, for any ε > 0 we have the error bound

1− E(Ψ)
nµ(∆)

= O
(
s1/3−ε

)
as n →∞. (61)
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Note: Theorem 2.17 ensures that a ∆ like above always exists.

Proof. For the upper bound on Optn we will give an upper bound on Prophn which
we can reduce to the one-dimensional case. For the lower bound we will show that Ψ
asymptotically achieves the upper bound.

Upper Bound. Recall that, when choosing the variables Xi with i ∈ I, we had to comply
with the constraint ∑

i∈I

Xi ≤ 1. (62)

Define δ := (θ1 + θ2 + · · · + θd)−1 and set α := δ θ. Now consider the following one-
dimensional relaxation of (62) ∑

i∈I

〈Xi, α〉 ≤ 1. (63)

(62) implies (63) because if (62) holds we get

∑

i∈I

〈Xi, α〉 =
〈 ∑

i∈I

Xi, α

〉

=
d∑

j=1

αj

∑

i∈I

X
(j)
i

︸ ︷︷ ︸
≤1

≤
d∑

j=1

αj

= 1.

Intuitively, (63) means that – instead of staying in the cube Q – the sum of the selected
points must stay within a certain simplex given by a hyperplane that goes through 1.
Now, let

Yi := 〈Xi, α〉 .
When selecting the Yi’s under the relaxed constraint

∑
i∈I Yi ≤ 1 the prophet will do at

least as good as under (62). Let F be the distribution function of the Yi’s. Then F is
continuous because µ has a density.
We apply corollary 4.2 to the sequence (Y1, Y2, . . .) to get for n > 1/E [Y1]

Prophn ≤ nF (ε), (64)

for any ε such that ∫ ε

0
x dF (x) =

1
n

. (65)
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We will show that ε = δ satisfies (65) and that F (δ) = µ(∆), then (64) implies the upper
bound Prophn

<∼nµ(∆).
The latter is clear because

F (δ) = P (Y1 ≤ δ) = P (〈X1, α〉 ≤ δ) = P (〈X1,θ〉 ≤ 1) = P (X1 ∈ ∆) = µ(∆).

Now, show that ε = δ satisfies (65).

∫ δ

0
x dF (x) = E [Y111{Y1≤δ}]

= E [〈X1,α〉 11{〈X1,α〉≤δ}]

= E [
d∑

j=1

αjX
(j)
1 11{X1∈∆}]

=
d∑

j=1

αjE [X(j)
1 11{X1∈∆}]

=
d∑

j=1

αjgj(∆)

=
d∑

j=1

αj
1
n

because gj(∆) = 1
n if αj 6= 0

=
1
n

We get the upper bound on Optn

Optn ≤ Prophn
<∼nµ(∆). (66)

Remark: As we know already that Optn → ∞ by lemma 2.5 we can now conclude that
nµ(∆) →∞ as well and therefore

s → 0 as n →∞ (67)

Lower Bound. First note that Ψ as defined in the theorem is an admissible online
selection policy. And so the optimal expected number of selected items is at least E(Ψ):

Optn ≥ E(Ψ).

In this part we will show the error bound (61). Since s → 0 when n →∞ this will give us
E(Ψ) ∼ nµ(∆). And together with the upper bound we get

nµ(∆) ∼ E(Ψ) ≤ Optn ≤ Prophn
<∼nµ(∆),
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s
2/3

s
2/3

     ∆′
∆

s

s 1

1

Q

Figure 6: With the policy Ψ a point is selected when it is in the hatched region ∆′. (s is
the largest coordinate of the barycenter of ∆.)

which proves the rest of the claim.

The stationary policy which uses ∆ instead of ∆′ as acceptance region seems to be more
natural. Unfortunately, it is not always asymptotically optimal when d > 1. But the
difference in measure between the two regions is asymptotically negligible:
ci(∆) = gi(∆)/µ(∆) ≤ 1/(nµ(∆)) = s, so lemma 2.19 gives us

µ(∆′)
µ(∆)

≥ 1− d s1/3, (68)

which converges to 1 as n →∞. We will need (68) later.

The upper bound on E(Ψ) is easy. Trivially, we have

E(Ψ) ≤ E [
n∑

i=1

11{Xi∈∆′}]

= n µ(∆′)
≤ n µ(∆).

So

1− E(Ψ)
nµ(∆)

≥ 0.

Now, we turn to the lower bound on E(Ψ).
Introduce the stopping time (see definition 4.7)

ρ := inf {k |
k∑

i=1

Xi11{Xi∈∆′} 6≤ 1}
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and set ρ = ∞ if no such k exists. Then the number of selected variables by our strategy
Ψ is

(ρ−1)∧n∑

i=1

11{Xi∈∆′},

where (ρ− 1) ∧ n denotes the minimum of n and ρ− 1. When using ρ ∧ n , which is also
a stopping time, instead of (ρ − 1) ∧ n as upper bound of the sum the error is at most 1
and will be asymptotically negligible. Both ρ ∧ n and 11{Xi∈∆′} have finite expectation,
whence by Wald’s equation (see theorem 4.8),

E(Ψ) ≥ E [
ρ∧n∑

i=1

11{Xi∈∆′}]− 1

= µ(∆′) · E [ρ ∧ n]− 1. (69)

For µ(∆′) we already have a bound. Now, we want to bound E[ρ ∧ n] from below. We
will use that

E [ρ ∧ n] ≥ mP (ρ > m) for any m < n (70)

and will have to choose m suitably. Note that

P (ρ ≤ m) = P (
m∑

i=1

Xi11{Xi∈∆′} 6≤ 1)

≤
d∑

j=1

P (
m∑

i=1

X
(j)
i 11{Xi∈∆′} > 1)

Now, apply lemma 2.20 to Zi = X
(j)
i 11{Xi∈∆′} , a = s2/3 and m = bn(1− s1/3−ε)c. This is

possible because E [Zi] = gj(∆′) ≤ gj(∆) ≤ 1
n and Zi ≤ a by definition of ∆′.

We get with δ := 1− m
n ≥ s1/3−ε

P (ρ ≤ m) ≤ d exp [− δ2

2a
]

≤ d exp [−s2/3−2ε

2s2/3
]

= d exp [−1
2
s−2ε]

= O(s) as s → 0. (71)

Now we are ready to prove the rest. Take inequality (69) to start with.

E(Ψ)
n µ(∆)

≥ µ(∆′)E [ρ ∧ n]− 1
nµ(∆)

≥ µ(∆′)
µ(∆)

m

n
P (ρ > m) − s (by inequality (70))
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All three factors on the right-hand side are less than 1 (and converge to 1) and we already
have bounds for them. First write

1− E(Ψ)
nµ(∆)

≤ 1− µ(∆′)
µ(∆)

m

n
P (ρ > m) + s

and now use the inequality 1 − abc ≤ (1 − a) + (1 − b) + (1 − c), which holds for all
0 ≤ a, b, c ≤ 1 and apply (68), the definition of m and (71) to get

1− E(Ψ)
nµ(∆)

≤ ds
1
3 + O(s1/3−ε) + O(s) + s

= O(s1/3−ε).

2

2.5 Solution for certain distributions

2.5.1 A product distribution

Consider a measure µ on Q with distribution function

F (x) = axα1
1 xα2

2 · · ·xαd
d

in a neighborhood of 0, where a, α1, α2, . . . , αd are positive constants. This is the direct
generalisation of the distributions studied in the paper of Coffman and al. [3] to more
than one dimension. This will also give the result for the Lebesgue-measure on Q as a
special case.

Theorem 2.22
Optn ∼ γ · (an)1/(1+α) (72)

where

γ := (1 + α)
[
α1 · · ·αd Γ(α1) · · ·Γ(αd)

αα1
1 · · ·ααd

d Γ(2 + α)

]1/(1+α)

and α := α1 + α2 + · · ·+ αd.

Proof. The proof is given in section 3.2. This is a special case of theorem 3.2 where the
problem with random N is treated.

Having this solution we can derive an asymptotic solution to an integro-differential
equation.
The special form of the distribution function F enables us to use a different approach to
obtain Optn in this case. Again, consider the Poissonized ’version’ of this problem. Let
u(t) be as in subsection 2.2.2. Similar to the recursion formula for Optn in section 2.1
we will get an integro-differential equation for u(t). The solution to the equation will be
unique so we get information about it via u(t).
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Lemma 2.23 Let
F (x) = xα1

1 xα2
2 · · ·xαd

d

be the distribution function of the measure µ. Let f be a density of µ with respect to the
Lebesgue measure. Then u is differentiable and satisfies the integro-differential equation

u′(t) =
∫

Q
(1 + u(F (1− y)t)− u(t))+ dF (y). (73)

Proof. Suppose at some point of the selection process we are left with the space c ≤ 1,
that is to say the sum of the items selected so far is 1 − c. And suppose there is still
t time left. We want to express the maximal expected number of selected items in this
’rest’-problem, i.e u(µ, c, t), by u.
Since we cannot select items with sizes which are not in [0, c] we might as well consider
the ’thinned’ counting process of those events j of the original Poisson process such that
Xj ∈ [0, c]. It is well known that this new process then again is a homogenuous Poisson
process with rate P (Xj ∈ [0, c]) = F (c). It is equivalent to again consider a Poisson
process with rate 1 but shorten the time of the selection process to F (c) t because in both
cases the events come from a homogenuous Poisson process and their total number has
the same distribution (Poisson with mean F (c) t).
Let µ′ be the probability measure on [0, c] defined by µ′(A) = µ(A)/F (c) for subsets
A ⊂ [0, c]. Then µ′ is the distribution of Xj given that Xj ∈ [0, c]. So u(µ, c, t) =
u(µ′, c, F (c)t).
We will now show that the packing problem on [0, c] with measure µ′ is equivalent to the
packing problem on [0,1] with measure µ. Here, equivalent means u(µ′, c, s) = u(µ,1, s)
(s ≥ 0).
Consider the linear, one-to-one mapping

g : [0,1] → [0, c]
(x1, x2, . . . , xd) 7→ (c1x1, c2x2, . . . , cdxd).

which respects the partial order in Rd. g is measure-preserving in the sense

µ(g−1(A)) = µ′(A) (74)

for all A ⊂ [0, c]. To prove this, it suffices to show (74) for A = [0,y] and every 0 ≤ y ≤ c
because the the set of all such intervals is ∩-stable and generates the σ-algebra B([0, c]).
So g(µ) = µ′ then follows by the uniqueness theorem in measure theory. But

µ(g−1(A)) = µ( [0, g−1(y)] ) = F (g−1(y)) =
F (y)

cα1
1 · · · cαd

d

=
F (y)
F (c)

= µ′(A).

By the use of g we can now transform an admissible policy Ψ for the packing problem on
[0,1] with measure µ to an admissible policy Ψ′ for the packing problem on [0, c] with
measure µ′ and the other way around. If Ψ is given define

Ψ′( (x1, t1), (x2, t2), . . .) = Ψ( (g−1(x1), t1), (g−1(x2), t2), . . .)
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and if Ψ′ is given define

Ψ( (x1, t1), (x2, t2), . . .) = Ψ′( (g(x1), t1), (g(x2), t2), . . .).

As g is measure-preserving we have Eµ(Ψ) = Eµ′(Ψ′).

Therefore our problem is quivalent to packing on [0,1] with the items coming from a
Poisson process with rate 1 in time F (c) t and we get u(µ, c, t) = u(µ,1, F (c)t) = u(F (c)t)
as maximal expected number of selected variables.

Now, to give a formula for u(t+ ε) for some small ε, we condition on the number of events
occurring in the time [0, ε]: L(ε). L(ε) is Poisson distributed with mean ε. Therefore
P (L(ε) = 0) = 1− ε− o(ε), P (L(ε) = 1) = ε + o(ε) and P (L(ε) ≥ 2) = o(ε)
(see definition (4.5)). If no event occurs up to time ε then the maximal expected number
of selected items will be u(t). If one event occurs up to time ε and X1 = y then we
have the choice of rejecting or selecting it. If we reject it we get a maximal expected
number of selected items of u(t). If we select it, we get this one item plus the maximal
expected number of selected items we can select in time t and space 1 − y. By the
dynamical programming principle, it is optimal to choose the larger value. Thus by the
above discussion we have a maximal expected number of selected items of

∫

Q
f(y) max{1 + u(F (1− y)t), u(t)} dy,

conditioned on {1 event occurs up to time ε}. Since the probability of two or more events
occurring up to time ε becomes so small it suffices to note that this conditional maximal
expected number of selected items is finite.
All in all we get

u(t + ε) = (1− ε− o(ε))u(t)

+(ε + o(ε))
∫

Q
f(y) max{1 + u(F (1− y)t), u(t)} dy

+o(ε).

Collect the terms with o(ε), rearrange and divide by ε to obtain

u(t + ε)− u(t)
ε

= −u(t) +
∫

Q
f(y) max{1 + u(F (1− y)t), u(t)} dy +

o(ε)
ε

Since o(ε)/ε → 0 when ε → 0 we see that u is differentiable and satisfies

u′(t) = −u(t) +
∫

Q

f(y) max{1 + u(F (1− y)t), u(t)} dy

=
∫

Q
f(y) (max{1 + u(F (1− y)t), u(t)} − u(t)) dy

=
∫

Q
f(y) (1 + u(F (1− y)t)− u(t))+ dy 2
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Plugging f and F into this equation, yields the following integro-differential equation with
initial condition.

u′(t) = α1 · · ·αd

∫
Q yα1−1

1 · · · yαd−1
d [1 + u((1− y1)α1 · · · (1− yd)αd t)− u(t)]+ dy

u(0) = 0

}

(75)

Corollary 2.24 The solution u to the integro-differential equation (75) is unique and satisfies

u(t) ∼ γ · t1/(1+α) (t →∞).

Proof. We know that u as defined in (11) is a solution to (75). Since u(n) ∼ Optn by
theorem 2.8, we get u(t) ∼ γt1/(1+α) by theorem 2.22. The only thing that is left to prove
is the uniqueness of the solution to (75).
Suppose u 6= v were two different solutions. Then let b := inf {t ≥ 0 |u(t) 6= v(t)}.
Then u(b) = v(b) because u and v are continuous and u(0) = v(0). Let ε > 0. By
integrating the integro-differential equation and using u(b) = v(b) we get

u(b+ε)−v(b+ε) =
∫ b+ε

b

∫

Q
f(y)[(1+u(F (1−y)t)−u(t))+−(1+v(F (1−y)t)−v(t))+] dy dt

Using |x+ − y+| ≤ |x− y| we get

|u(b + ε)− v(b + ε)| ≤
∫ b+ε

b

∫

Q
f(y)[|u(F (1− y)t)− v(F (1− y)t) + v(t)− u(t)|] dy dt

≤ ε 2 max{|u(t)− v(t)| | 0 ≤ t ≤ b + ε}︸ ︷︷ ︸
=:m

,

where the last step follows by the triangle inequality, since F (1−y) ≤ 1 and since µ(Q) = 1.
Now, let ε < 1

2 be such that m = |u(b + ε) − v(b + ε)|, that is the maximum is attained
at the right border of [0, b + ε]. It is always possible to choose such an ε by making the
interval smaller. As m > 0 we get the contradiction m < m.

2

2.5.2 ’Almost’ Lebesgue measure

Let the density f be continuous in 0 and let

a := f(0) > 0

Then
Optn ∼ γ · (an)

1
d+1

with
γ =

d + 1
((d + 1)!)1/(d+1)

.
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Remark: As the solution to the selection problem asymptotically only depends on the
behavior of f(x) when x → 0 this distribution can be regarded as ’almost’ Lebesgue
measure up to the scaling factor a.
Proof. This is a special case of the example in the previous section. Set α1 = α2 = · · · =
αd = 1. Then the density of the distribution in example 1 is constant a in a neighborhood
of 0. And f(x) ∼ a when x → 0. So, by theorem 2.9 we get that Optn is asymptotically
like the expression (72) from theorem 2.22.

Optn ∼ γ · (an)
1

d+1 .

Plugging αi = 1 into the expression for γ and using Γ(1) = 1 verifies the above result.

2



3 Sequential Selection out of a Random Number of Random
Vectors under a Sum Constraint

3.1 Main result for the random number of items

In this chapter we again have a random number of items at disposal to be packed into
Q = [0, 1]d. We cannot take a fixed acceptance region anymore to get an asymptotically
optimal policy. For instance if N is geometrically distributed, intuitively we would choose
a large acceptance region in the beginning. After all, with fixed probability the item
presented to us could be the last and space that is left over doesn’t help us. And later,
when the remaining space is small, we would choose – or even have to choose – a smaller
acceptance region.
Again, we only solve the problem asymptotically when ν becomes ’large’ in a sense. This
problem is more genereral than the one from the previous chapter but we get the increase
in generality only by using a stronger hypothesis on the measure µ on Q:

g(∆r)

g(∆r)

∆ ∆rr

Q

r<
0

0 0r

θ

There must be a θ ∈ Rd
+, θ > 0 such that

g1(∆r) = g2(∆r) = · · · = gd(∆r)

with

∆r := {x ∈ Q | 〈x, θ〉 ≤ r}

for all r sufficiently small (0 < r ≤ r0).





(76)

(76) means that the simplicial sections ∆r, which
are similar to one another in the geometric sense,
must have g(∆r) on the diagonal of the positive
orthant at least when they are small (see the figure
to the left).

Remark: This seems like a strong hypothesis. It is true that theorem 2.17 suggests
that most absolutely continuous measures admit finding simplicial sections with g on the
diagonal but in general they need not to be similar.
On the other hand, in the following section we will show that the fairly general µ with the
distribution function

P (X1 ≤ x) = xα1
1 xα2

2 · · ·xαd
d ,

where α1, α2, . . . , αd are positive constants, does satisfiy this hypothesis.

There are also distributions µ satisfying (76), where the coordinates X
(1)
1 , X

(2)
1 , . . . , X

(d)
1

are dependent. Every exchangeable µ also satisfies (76) with θ = 1. Exchangeable means

that the distribution of (X(σ(1))
1 , X

(σ(2))
1 , . . . , X

(σ(d))
1 ) is the same for all permutations σ of

{1, 2, . . . , d}.



50 3 SELECTION OUT OF A RANDOM NUMBER OF RANDOM VECTORS

Let θ be as above, without loss of generality we can norm θ such that ‖θ‖1 = 1 and define

Si := 〈θ, Xi〉 .

Let F be the distribution function of the Si’s. And let

G(x) = E [S111{S1≤x}] =
∫ x

0
s dF (s). (77)

Further suppose that

F is continuous and
xF (x) ≤ cG(x) for some constant c > 0 and for all 0 < x < x0,

(78)

where x0 can be arbitrarily small. Note that then G must be continuous also.
Define

πj := P (N ≥ j) for j = 1, 2, . . . .

And let
Optν := Opt(µ,1, ν).

Theorem 3.1 Suppose the measure µ on Q satisfies (76) and (78).

(a) If ν – the distribution of N – varies in such a way that the equation

∞∑

j=1

G(επj) = 1 (79)

can be solved for ε and ε → 0,
then

Optν ∼
∞∑

j=1

πjF (επj) →∞. (80)

The strategy Ψ̂ with

Ψ̂j(X1, . . . , Xj) = 1 :⇐⇒ Sj ≤ επj and

j∑

i=1

Xi11{Si≤επj} ≤ 1

is asymptotically optimal, i.e. E(Ψ̂) ∼ Optν .
Furthermore, we have the error bound

E(Ψ̂)
Optν

= 1− O(ε
1
3 ). (81)

(b) If
∞∑

j=1
G(επj) > 1, for all ε > 0 then Optν = ∞.
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(c) If
∞∑

j=1
G(επj) < 1, for all ε > 0 then ess sup N < 1/E [S1].

Remark: We don’t make a statement about Optν if ε 6→ 0 or in case (c). In these cases
ν is ’not large enough’ to allow an asymptotical analysis by our method.

Proof. Let θmin := min
i

θi > 0.

(a): In part 1 we show the upper bound and in part 2 we show that above Ψ̂ asymptotically
achieves this bound. But first note that the expression in the claim (80) indeed tends to
infinity when ε → 0.

∞∑

j=1

πjF (επj) =
1
ε

∞∑

j=1

επj F (επj)

≥ 1
ε

∞∑

j=1

G(επj) since xF (x) ≥ G(x)

=
1
ε
→∞

Part 1 (Upper Bound). We will show that the upper bound not only holds asymptotically
but

Optν ≤
∞∑

j=1

πjF (επj). (82)

First extend the class of admissible policies. Let P ′ be the class of all selection policies Ψ
(they need not to be online!) which satisfy the one dimensional sum constraint

∞∑

j=1

ΨjSj ≤ 1. (83)

The one dimensional sum constraint (83) is weaker than the sum constraint (1), since (1)
implies

∞∑

j=1

ΨjSj =
∞∑

j=1

Ψj 〈Xj , θ〉 =
〈 ∞∑

j=1

ΨjXj

︸ ︷︷ ︸
≤1 by (1)

, θ

〉
≤ θ1 + · · ·+ θd = 1.

And therefore
Optν ≤ sup

Ψ∈P ′
E(Ψ) = Proph(dist(S1), 1, ν).
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For the latter we have an upper bound given by theorem 4.1. Apply theorem 4.1 to the
sequence (S1, S2, . . .), the distribution of S1 and with N , F and ε like above. This is
possible since

E
∞∑

j=1

S111{S1≤επj} =
∞∑

j=1

G(επj) = 1,

so hypothesis (103) is satisfied.
We get

Proph(dist(S1), 1, ν) ≤
∞∑

j=1

πjF (επj),

which proves (82).

Part 2 (Lower Bound). Let Ψ′ be defined by Ψ′
j = 11{Sj≤επj}.

Let Ψ̂ be the policy from the theorem, i.e

Ψ̂j = 1 :⇐⇒ Ψ′
j = 1 and the sum of the variables selected so

far plus Xj lies still in Q.

The first time this sum leaves Q the selection process stops and all further random variables
are rejected. Since the decision whether to select Xj depends only on X1, . . . , Xj and since
(1) is fulfilled the selection policy Ψ̂ lies in P.
Now let

ρ := min{k |
k∑

j=1

Ψ′
jXj 6≤ 1}

and let ρ := ∞ if no such k exists. Then

E(Ψ̂) = E
(ρ−1)∧N∑

j=1

Ψ′
j . (84)

Since

E
N∑

j=1

Ψ′
j =

∞∑

j=1

E11{N≥j} =
∞∑

j=1

πjF (επj)

we have to show that

lim
ε→0

E
(ρ−1)∧N∑

j=1
Ψ′

j

E
N∑

j=1
Ψ′

j

= 1 (85)

and bound the error. In this form we see that we must show that the stopping time ρ isn’t
’too often too small’. In order to be able to use an independence-argument later in the
proof we would like to use ρ ∧N instead of (ρ− 1) ∧N as upper bound of the sum. The
denominator tends to infinity as ε → 0 as proven in the very beginning. For this reason
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and since E
(ρ−1)∧N∑

j=1
Ψ′

j and E
ρ∧N∑
j=1

Ψ′
j differ by at most 1, we don’t change the limit (and

neither the order of magnitude of the error bound) when using the latter nominator:

E

ρ∧N∑

j=1

Ψ′
j =

∞∑

j=1

E Ψ′
j11{N≥j}11{ρ≥j}

=
∞∑

j=1

F (επj) P(N ≥ j) P(ρ ≥ j) (86)

=
∞∑

j=1

πjF (επj)−
∞∑

j=1

πj F (επj) P (ρ < j), (87)

where the line next to the last ,(86), follows from the independence of N , Ψ′
j and the

event {ρ ≥ j} = {X1 + · · · + Xj−1 ≤ 1}. The expression in (87) makes sense (∞ −∞
is impossible) as will turn out later. Since the first term in (87) is what we would like
to approximate, we need to bound the second term from above. We have for any J ∈ N
(which we will choose properly in the sequel)

∞∑

j=1

πjF (επj)P (ρ < j) =
J∑

j=1

πjF (επj)P (ρ < j) +
∞∑

j=J+1

πjF (επj)P (ρ < j)

≤ P (ρ ≤ J)
J∑

j=1

πjF (επj) +
∞∑

j=J+1

πjF (επj)

≤ P (ρ ≤ J)
1
ε

∞∑

j=1

επj F (επj) +
1
ε

∞∑

j=J+1

επj F (επj)

≤ P (ρ ≤ J)
1
ε
c +

1
ε
cδ, (88)

where last line holds because xF (x) ≤ cG(x),
∑∞

j=1 G(επj) = 1 and with

δ = δ(J) :=
∞∑

j=J+1

G(επj).

Now, bound P (ρ ≤ J) from above.

P (ρ ≤ J) = P
( J∑

j=1

Xj11{Sj≤επj} 6≤ 1
)

≤
d∑

i=1

P
( J∑

j=1

X
(i)
j 11{Sj≤επj} > 1

)
(89)
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We will bound the probability on the right-hand side with Chebyshev’s inequality. First we
have to compute EX

(i)
j 11{Sj≤επj}. Observe that {Sj ≤ r} = {〈Xj , θ〉 ≤ r} = {Xj ∈ ∆r}.

So that EX
(i)
j 11{Sj≤επj} = gi(∆επj ). We claim that

gi(∆r) = G(r) for 0 < r < r0. (90)

Let 0 < r < r0. Then gi(∆r) is the same for all i = 1, 2, . . . , d by the hypothesis (76) and
we get

G(r) = ES111{S1≤r} = E S111{X1∈∆r} =
〈
EX111{X1∈∆r}, θ

〉

= 〈g(∆r), θ〉 = (θ1 + θ2 + · · ·+ θd) g1(∆r) = g1(∆r),

which proves (90).

But since επj ≤ ε < r0 for ε small enough we conclude that then EX
(i)
j 11{Sj≤επj} = G(επj).

Using (79) and the definition of δ we get

E
J∑

j=1

X
(i)
j 11{Sj≤επj} =

J∑

j=1

G(επj) = 1− δ. (91)

Now bound the variance using the independence of the Xj ’s and the formula VAR[Z] ≤
E [Z2] for a random variable Z.

VAR
J∑

j=1

X
(i)
j 11{Sj≤επj} ≤

∞∑

j=1

E (X(i)
j )211{Sj≤επj} (92)

On the event {Sj ≤ επj} we have θiX
(i)
j ≤ 〈θ, Xj〉 = Sj ≤ επj ≤ ε and thus X

(i)
j ≤ ε

θi
.

We bound one of the factors of the square on the right-hand side of (92) by ε
θi

and get

VAR
J∑

j=1

X
(i)
j 11{Sj≤επj} ≤ ε

θi

∞∑

j=1

E X
(i)
j 11{Sj≤επj}

=
ε

θi

∞∑

j=1

G(επj)

=
ε

θi
(93)

Finally, we can apply Chebyshev’s inequality to (89) using (91) and (93) to get

P (ρ ≤ J) ≤
d∑

i=1

1
δ2

ε

θi
≤ εd

δ2θmin
. (94)
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Substituting this result in (88) and using
∞∑

j=1
πj F (επj) ≥ 1

ε yields

∞∑
j=1

πj F (επj) P (ρ < j)

∞∑
j=1

πj F (επj)
≤ dc

δ2 1
εθmin

+ cδ ≤ const · ( ε

δ2
+ δ) (95)

for all J .
Now, we have to choose J(ε), such that this term tends to zero, when ε → 0. Recall that

δ =
∞∑

j=J+1

G(επj).

Since the sum converges by the hypothesis and every term in the sum is less than or equal
to ε ( since G(x) ≤ x,) we can choose J such that δ ∼ ε

1
3 . Then

ε

δ2
+ δ = O(ε

1
3 ).

Putting together (95) and (87) we obtain

E
ρ∧N∑
j=1

Ψ′
j

∑∞
j=1 πjF (επj)

= 1−O(ε
1
3 ),

which indeed remains valid if we again write ρ− 1 instead of ρ, since ε = O(ε
1
3 ).

(84) and (82) now give the result

E(Ψ̂)
Optν

= 1−O(ε
1
3 ).

(b): We will show that for arbitrary large M ∈ N there is a strategy Ψ such that E(Ψ) ≥
M . Then Optν = ∞ follows.
First, we will show that (b) even implies

∞∑

j=1

G(επj) = ∞ for all ε > 0. (96)

Suppose for ε = ε1 > 0 this series was finite, say ≤ L. Then we can find a J such that∑∞
j=J+1 G(ε1πj) ≤ L/4 and an ε2, 0 < ε2 < ε1 such that

∑J
j=1 G(ε2πj) ≤ L/4. The latter

is possible since the finite sum is continuous in ε2 and vanishes for ε2 = 0. Because G
is increasing, we get

∑∞
j=1 G(ε2πj) ≤ L/4 + L/4 = L/2. We could continue halving the
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value of the series until it drops below 1. Contradiction.
Fix M ∈ N and let ε > 0 be such that

ε ≤ θmin

2M
and ε <

1
6
.

Consider the (inadmissible) policy Ψ′ with Ψ′
j := 11{Sj≤επj}.

This policy might violate the constraint
∑∞

j=1 XjΨ′
j ≤ 1. But – as the επj are small

– whenever this restriction is violated we must have selected at least 2M items before:
Suppose we have

∑k
j=1 XjΨ′

j 6≤ 1 for some k and the constraint is violated in the i-th
coordinate. Then

1 <
k∑

j=1

X
(i)
j 11{Sj≤επj}

≤
k∑

j=1

επj

θi
11{Sj≤επj} , as on {Sj ≤ επj} we have θiX

(i)
j ≤ Sj ≤ επj

≤
k∑

j=1

1
2M

11{Sj≤επj} , as επj

θi
≤ ε

θi
≤ 1/(2M).

We conclude that
k∑

j=1

11{Sj≤επj} > 2M.

So the number of selected items with Ψ′ before the first violation of the sum restriction is
at least 2M .
We will show that this violation of the constraint happens at least with probability 1

2 .

P (constraint not violated) ≤ P
( ∞∑

j=1

Sj11{Sj≤επj} ≤ 1
) ≤ P (S ≤ 1)

with S :=
J∑

j=1
Sj11{Sj≤επj} and for any J . By (96) we can choose J such that

E [S] =
J∑

j=1

G(επj)

is larger than 2 and smaller than 3. We have

VAR [S] ≤
J∑

j=1

ES2
j 11{Sj≤επj} ≤ επj

J∑

j=1

ESj11{Sj≤επj} ≤ ε E [S] ≤ 3ε ≤ 1
2
,

which implies by the Chebyshev inequality that P (S ≤ 1) ≤ VAR [S]/(2− 1)2 < 1/2.
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Therefore the policy Ψ which selects all items that Ψ′
j selects as long as the sum constraint

is satisfied: Ψj = 1 :⇐⇒ Ψ′
j = 1 and

∑j
l=1 XlΨ′

l ≤ 1
has

E(Ψ) ≥ 2M · 1
2

= M.

2

(c): Let k be so that πk > 0. Then we can define ε = 1
πk

and get

1 >
∞∑

j=1

G(επj) ≥
k∑

j=1

G(1) = kE [S1].

If ess sup N was ∞ then E [S1] = 0, which we have excluded because the distribution
function F of S1 was continuous. So, letting k = ess sup N we get ess sup N < 1/E [S1].

2

3.2 Example

Theorem 3.2 Let µ have the distribution function

P (X1 ≤ x) = axα1
1 xα2

2 · · ·xαd
d

for x in a neighborhood U of 0, where a, α1, α2, . . . , αd are positive constants.
Write α := α1 + α2 + · · ·+ αd and let

γ := (1 + α)
[
α1 · · ·αd Γ(α1) · · ·Γ(αd)

αα1
1 · · ·ααd

d Γ(2 + α)

]1/(1+α)

. (97)

If

nπ :=
∞∑

j=1

π1+α
j →∞

as the distribution of N varies , then

Optν ∼ γ · (anπ)
1

1+α .

If nπ = ∞ then Optν = ∞.

Remark: nπ is a measure for the ’size of N ’.

• In the case of fixed N ≡ n we have nπ = n. We have stated this special case in
theorem 2.22.
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• In the case where N is geometric distributed with parameter p = 1− q,
i.e. P (N = j) = p qj−1 for j = 1, 2, . . ., we have πj = qj−1 and

nπ =
∞∑

j=1

(qj−1)1+α =
∞∑

j=0

(q1+α)j =
1

1− q1+α
.

We see that nπ → ∞ is equivalent to p → 0. And in that case we have 1 − q1+α ∼
(1 + α) p, which one can see using de l’Hospital’s rule. So we have

Optν ∼ γ ·
[

a

(1 + α) p

]1/(1+α)

.

Proof of theorem 3.2.
Let θ be defined by θi := αi/α. Then θ > 0 and ‖θ‖1 = 1. We will show that with this
choice the hypotheses (76) and (78) of theorem 3.1 are satisfied.
Let ∆r := {x ∈ Q | 〈x, θ〉 ≤ r}. Observe that there is a r0 > 0 such that
∆r = {x ≥ 0 | 〈x, θ〉 ≤ r} and ∆r ⊂ U for 0 < r < r0. In the following let 0 < r < r0.

We calculate

gi(∆r) =
∫

∆r

xi dµ(x)

= a

∫

∆r

α1α2 · · ·αd xα1−1
1 xα2−1

2 · · ·xαi
i · · ·xαd−1

d dx

For clearness we put the dots here as well as in the rest of the example although the i-th
factor is an ’exception’. The dots have to be interpreted as if the i-th factor was not there.
Now, we substitute yj = θj

r xj (j = 1, . . . , d). Then ∆r = {y ≥ 0 | y1 + · · · + yd ≤ 1}. As
θ > 0, we get

gi(∆r) = a r1+α α1 · · ·αd

θα1
1 · · · θαd

d θi

∫

y1+···+yd≤1

yj≥0

yα1−1
1 · · · yαi

i · · · yαd−1
d dy.

Now use Dirichlet’s formula (e.g. see [5] or [18]), the functional equation Γ(x+1) = xΓ(x)
of the Gamma function and the definition of θ to calculate the integral.

gi(∆r) = a r1+α α1 · · ·αd

θα1
1 · · · θαd

d θi

Γ(α1) · · ·Γ(αi + 1) · · ·Γ(αd)
Γ(1 + α1 + · · ·+ (αi + 1) + · · ·+ αd)

= a r1+α αi

θi

α1 · · ·αd

θα1
1 · · · θαd

d

Γ(α1) · · ·Γ(αd)
Γ(2 + α)

= a

(
rα

1 + α
γ

)1+α

. (98)
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This shows that gi(∆r) does not depend on i and so (76) is proven.
This also gives us G(r) as defined in (77), because by (90) we have G(r) = gi(∆r).
So, using (98) we get

G(r) = k r1+α with k := a (
α

1 + α
γ)1+α. (99)

We also need to calculate F (r). In principal we could use a very similar way as when we
computed gi(∆r) with Dirichlet’s formula. But as we already have G(r), we can use the
definition of G – formula (77) – to calculate F through G:

G(r) =
∫ r

0
x dF (x) = [xF (x)]r0 −

∫ r

0
F (x) dx = rF (r)−

∫ r

0
F (x) dx (100)

Here, we made use of partial integration. G is differentiable and F is continuous by
definition because µ is continuous. So the integral to the right is differentiable with respect
to r. Therefore, rearranging (100) for F (r), we see that F (r) must also be differentiable
in r > 0.
Differentiate (100) to get

G′(r) = rF ′(r) + F (r)− F (r) = rF ′(r).

So

F (r) = F (0) +
∫ r

0
F ′(x) dx

=
∫ r

0

G′(x)
x

dx

=
∫ r

0

(1 + α)kxα

x
dx

=
1 + α

α
k rα

=
1 + α

α

G(r)
r

. (101)

This also shows that hypothesis (78) is also satisfied with c = 1+α
α .

Now consider the equation
∞∑

j=1

G(επj) = 1.

It is equivalent to

1 = k ε1+α
∞∑

j=1

π1+α
j = k nπε1+α.

So if nπ = ∞,
∑∞

j=1 G(επj) > 1 for all ε > 0 and theorem 3.1 tells us that Optν = ∞.
Otherwise

ε = (knπ)−1/(1+α), (102)
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which tends to 0 as nπ tends to ∞. We can apply theorem 3.1 and get

Optν ∼
∞∑

j=1
πjF (επj) =

∞∑
j=1

πj
1+α

α
G(επj)

επj
(using (101))

= 1+α
α

1
ε

∞∑
j=1

G(επj)

=
1 + α

α

1
ε

= 1+α
α (knπ)1/(1+α) (by (102))

= γ · (anπ)1/(1+α) (by definition of k)

2



4 Basic Theorems Used in the Main Part

Section 4.1 contains a one-dimensional result about the maximal expected number of
selected variables by the prophet, which we have used both in chapter 2 and 3.
The other section of this chapter constitutes of ’well known’ facts.

4.1 Sequential Selection under a Constraint in one Dimension

Theorem 4.1 Let X1, X2, . . . ≥ 0 be a sequence of independent identically distributed ran-
dom variables with distribution µ and distribution function F . Let N ∼ ν be a random variable
with values in N that is independent of (X1, X2, . . .). Let πj := P (N ≥ j) and ε > 0 be such
that

E
∞∑

j=1

X111{X1≤επj} = 1. (103)

Then the expected number of items the prophet can pack is

Proph(µ, 1, ν) ≤
∞∑

j=1

πjF (επj). (104)

Proof. The proof is much like in [8], where the idea of using the expected sum constraint
(105) comes from.
Let Q be the class of all selection policies Ψ that satisfy

E
∞∑

j=1

XjΨj ≤ 1. (105)

Clearly, (105) is weaker than the sum constraint (1). So

Proph(µ, 1, ν) ≤ sup
Ψ∈Q

E(Ψ). (106)

We claim that the following section policy Ψ′ (which is even online!) defined by

Ψ′
j :=

{
1 , if Xj ≤ επj

0 , if Xj > επj
(107)

is optimal in Q. That is Ψ′ ∈ Q and E(Ψ′) = sup
Ψ∈Q

E(Ψ).

To proof this, define

g(Ψ) = E
∞∑

j=1

ΨjXj − 1
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for any selection policy Ψ. Then the expected sum constraint (105) is equivalent to
g(Ψ) ≤ 0.
To prove Ψ′ ∈ Q we only have to calculate g(Ψ):

g(Ψ′) = E
∞∑

j=1

Ψ′
jXj − 1

= E
∞∑

j=1

Xj11{Xj≤επj} − 1

= 0 (by hypothesis)

Now, we show that E(Ψ′) ≥ E(Ψ) for all Ψ ∈ Q. For this purpose define the Lagrangian

L(Ψ) := E(Ψ)− 1
ε
g(Ψ) (108)

= E
N∑

j=1

Ψj − 1
ε
· (E

∞∑

j=1

ΨjXj − 1
)

=
1
ε

(
1 +

∞∑

j=1

E [εΨj11{N≥j} −ΨjXj ]
)

=
1
ε

(
1 +

∞∑

j=1

E [Ψj(επj −Xj)]
) since N and Ψ

are independent.

In this form we see that L(Ψ) is maximized over all selection policies when we choose

Ψj = 1 , if επj −Xj ≥ 0 and
Ψj = 0 , if επj −Xj < 0.

And this is equivalent to the definition (107) of Ψ′. So

L(Ψ′) ≥ L(Ψ) for all selection policies Ψ. (109)

We conclude that for arbitrary Ψ ∈ Q we have

E(Ψ) ≤ L(Ψ) by (108), since g(Ψ) ≤ 0
≤ L(Ψ′) by (109)
= E(Ψ′) by (108), since g(Ψ′) = 0

So
sup
Ψ∈Q

E(Ψ) = E(Ψ′) = E
N∑

j=1

11{Xj≤επj} =
∞∑

j=1

πjF (επj).

Together with (106) this proves the claim (104).
2
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Corollary 4.2 If in theorem 4.1 N ≡ n is not random and we have n > 1/E [X1] then there
is an ε > 0 such that G(ε) = 1

n with

G(x) :=
∫ x

0
y dF (y).

And we have
Prophn(µ, 1) ≤ nF (ε)

for any such ε.

Proof. Note that in this case πj = 1 if j ≤ n and πj = 0 otherwise, so we have

E
∞∑

j=1

X111{X1≤επj} = nEX111{X1≤ε} = nG(ε),

where we used that P (X1 = 0) = 0, since F is continuous. Since G must be continuous
also, G(0) = 0 and G(ε) ↑ EX1 > 1

n as ε → ∞ there is an ε such that nG(ε) = 1. The
preceeding theorem tells us that

Prophn(µ, 1) ≤
∞∑

j=1

πjF (επj) = nF (ε).

2

4.2 Standard theorems

Kuhn-Tucker theorem

Definition 4.3 Let H be a real vector space, Y a normed space and f be a (possibly
nonlinear) transformation from H to Y defined on a domain D ⊂ H.
Let x ∈ D and let h be arbitrary in H. If the limit

δf(x;h) = lim
ε→0

1
ε
[f(x + εh)− f(x)] (110)

exists, it is called the Gateaux-variation of f with increment h. If the limit (110) exists for
all h ∈ H, the transformation f is said to be Gateaux differentiable at x.
A point at which δf(x; h) = 0 for all h is called a stationary point.

Theorem 4.4 (Generalized Kuhn-Tucker Theorem) Let H be a real vector space, f
be a Gateaux differentiable real-valued functional on H and g a Gateaux differentiable mapping
from H into Rd. Assume that the Gateaux-variations are linear in their increments. Suppose
x̂ minimizes f subject to g(x) ≤ 0 and that x̂ is a regular point of the inequality g(x) ≤ 0,
i.e. there is an h ∈ X such that g(x̂) + δg(x̂, h) < 0. Then there is a θ ∈ Rd, θ ≥ 0, such
that the Lagrangian

f(x) + 〈g(x), θ〉
is stationary at x̂; furthermore, 〈g(x̂),θ〉 = 0.

This was taken from [11].
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Poisson process

The following definition is taken from [15].

Definition 4.5 (Poisson process) The counting process {L(t), t ≥ 0} is said to be a
Poisson process with rate a, a > 0, if:

1. L(0) = 0.

2. The process has stationary and independent increments.

3. P (L(h) = 1) = a h + o(h).

4. P (N(h) ≥ 2) = o(h).

It is well known that L(t) is Poisson distributed with mean at. Also

Theorem 4.6 (coloring, thinning) Suppose in a Poisson process {L(t), t ≥ 0} having
rate a every event is colored blue with probability p and red with probability 1−p independently
of the rest. Then the counting processes {B(t), t ≥ 0} and {R(t), t ≥ 0} of the blue and red
events are independent Poisson processes having respective rates ap and a(1− p).

Wald’s Equation

This definition and theorem are taken from [15].

Definition 4.7 An integer-valued random variable ρ is said to be a stopping time for the
sequence X1, X2, . . . if the event {ρ = k} is independent of Xk+1, Xk+2, . . . for all k = 1, 2, . . ..

Theorem 4.8 (Wald’s Equation)
If X1, X2, . . . are independent and identically distributed random variables having finite expec-
tations, and if ρ is a stopping time for X1, X2, . . . such that E [ρ] < ∞, then

E
ρ∑

j=1

Xj = E [ρ] E [X1]

Topology and Analysis

Theorem 4.9 (Lemma of Urysohn in strong form) Let A and B be closed disjoint Gδ subsets
of the normal topological space X. Then there exists a function f : X → [0, 1] such that
f−1(0) = A and f−1(1) = B.

Note: If X is metric than X is normal and every closed subset is Gδ.
See [13].
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Theorem 4.10 (Arzelà-Ascoli) Let (S, d) be a compact metric space and let M ⊂ C(S).
Where C(S) – the set of all continuous functions from S to R – is endowed with the supremum
norm. Suppose

(a) M is bounded and

(b) M is equicontinuous, i.e.

∀ε > 0 ∃δ > 0 ∀x ∈ M : d(s, t) < δ =⇒ |x(s)− x(t)| < ε.

Then M is relatively compact, i.e. every sequence in M has a subsequence which converges
in C(S).

See [16].
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