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Abstract

We observe a sequence X1, X2, . . . , Xn of independent identically distributed
coordinate-wise nonnegative d-dimensional random vectors sequentially. When
a vector is observed it can either be selected or rejected but once met this
decision is final. In each coordinate the sum of the selected vectors must
not exceed a given constant. The problem is to find a selection policy that
maximizes the expected number of selected vectors. For general absolutely
continuous distribution of the Xi we determine the maximal expected number
of selected vectors asymptotically and give a selection policy which asymptot-
ically achieves optimality.
Above problem raises a question closely related to the following problem. Given
an absolutely continuous measure µ on Q = [0, 1]d and a τ ∈ Q, find a set A of
maximal measure µ(A) among all A ⊂ Q whose center of gravity lies below τ
in all coordinates. We will show that a simplicial section {x ∈ Q | 〈x, θ〉 ≤ 1},
where θ ∈ Rd, θ ≥ 0 satisfies a certain additional property, is a solution to this
problem.
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1. Introduction

The one-dimensional case d = 1 has been treated by several authors before.
The special one-dimensional case where the distribution function on the size of the
Xi’s is of the form F (x) = Axα (α > 0) has been solved by Coffman et al. [2].
Later, Rhee and Talagrand [11] generalized this result to arbitrary distributions.
The generalization of the one-dimensional problem where the number n of observed
random vectors is itself random has been treated by Gnedin [6].
In this paper we generalize the problem to Xi’s of multi-dimensional size. This
can be interpreted in the following way. We have d different types of resources
and the j-th type of resource is limited by the constant cj (j = 1, . . . , d). The
’items’ Xi require a certain amount X

(j)
i of each resource j. For each resource type

the total amount needed by the selected items must not exceed the given limit.
By transforming the X

(j)
i (via X ′(j)

i = X
(j)
i /cj) we can assume without loss in

generality that all the cj ’s are 1.
A related multidimensional bin packing problem has been treated by Garey, Graham
and Johnson [4]. As a special case of their setting they consider the problem of
assigning all the sequentially observed vectors – which are not random in their
problem definition – to multiple “bins” such that the sum of all vectors assigned to
a bin is dominated by (1, . . . , 1). They consider the task of minimizing the number
of used bins, whereas we only may use one “bin” and want to maximize the number
of vectors “packed” into that one bin by possibly rejecting some of them.

∗∗ Postal address: Institut für Mikrobiologie und Genetik, Abteilung Bioinformatik, Goldschmidt-
straße 1, 37077 Göttingen, Germany, Email: mstanke@gwdg.de
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We now introduce some terms and notation. Let Q = [0,1]d be the d-dimensional
interval with endpoints 0 = (0, . . . , 0) and 1 = (1, . . . , 1). Let X1, X2, . . . Xn ≥ 0
be independent identically distributed d-dimensional random vectors with law µ
on Rd

+. (Inequalities between vectors should always be interpreted as a set of
coordinate wise inequalities.) Let X = (X1, X2, . . . , Xn). We will speak of the Xi’s
as sizes of items and we speak of subintervals of Q as space. n is the number of
items that are at disposal to be packed. All random variables are assumed to be
defined on some common probability space with probability measure P .

We define a selection policy to be a function Ψ = (Ψ1,Ψ2, . . . , Ψn) :
n∏

i=1

Rd
+ →

{0, 1}n and an online selection policy is a selection policy Ψ where x = (x1, x2, . . . , xn)
is mapped to Ψ(x) = (Ψ1(x), . . . ,Ψn(x)) and Ψi(x) = Ψi(x1, . . . , xi) for i =
1, 2, . . . , n, that is, Ψi is a function of x1, x2, . . . , xi only.

We consider the restriction that the sum of the selected variables must stay
within Q. We call those policies admissible that satisfy the sum constraint

n∑

i=1

Ψi(x)xi ≤ 1 for all x = (x1, . . . , xn) xi ≥ 0, i = 1, . . . , n (1)

A selection policy Ψ will be regarded as a function of the random sequence X and
we will usually write Ψ instead of Ψ(X) and Ψi for Ψi(X). We say that item i of
size Xi is selected by Ψ if Ψi(X1, . . . , Xi) = 1 and it is rejected if Ψi(X1, . . . , Xi) = 0.

We are interested in the expected number of selected variables

E(Ψ) := E

n∑

i=1

Ψi (2)

and want to maximize it.

Let P be the set of all admissible online selection policies and let S be the set of
all admissible selection policies.

Define
Optn := sup

Ψ∈P
E(Ψ) and Prophn := sup

Ψ∈S
E(Ψ),

the maximal expected number of selected items within the respective class of poli-
cies. As Optn and Prophn depend on the distribution of X1 we will sometimes write
Optn = Optn(µ) and Prophn = Prophn(µ).

Interpretation: For a policy in P the decision whether to select Xi or not depends
only on Xi and the ’past’: X1, X2, . . . , Xi−1. The items come one after the other and
we have to decide online, i.e. without knowing the ’future’ and without revoking a
decision we have made before. In S the decision can depend on the whole sequence
X1, X2, . . .. As has been done before we imagine a prophet who is given the task of
selecting the items. The prophet knows the sizes of all the items in advance.
Clearly, the prophet can ’simply’ select the largest subset I of {1, 2, . . . , n} such
that

∑
i∈I Xi ≤ 1. The expected number of selected variables by the prophet then

is
Prophn = E [max{#I |

∑

i∈I

Xi ≤ 1}].
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We know Optn ≤ Prophn as P ⊂ S.

In section 2 we will examine Optn for n becoming large and will show for absolute
continuous µ that Optn(µ) ∼ Prophn(µ) as n →∞ as in the one-dimensional case.
We will give an asymptotically optimal selection policy and determine Optn(µ).
In section 3 we will give an example solution for a measure µ which is a direct
generalization of Coffman et al.’s distribution: the multidimensional distribution
function F (x) = axα1

1 · · ·xαd

d for small x1 > 0, . . . , xd > 0.
The proof in section 2 depends on a result about simplicial sections of Q and their
barycentre which is given in section 4.

2. Sequential selection out of n random vectors under a sum constraint

In general, we cannot determine Optn(µ, c) exactly. Instead, we we will focus on
its asymptotic behavior when n →∞.
But first some definitions. We are given a probability measure µ on the d-dimensional
unit cube Q = [0, 1]d. By a simplicial section we mean a set {x ∈ Q | 〈x, θ〉 ≤ 1},
where θ ≥ 0.
Figure 3 on page 14 shows one. Assume the random vector Z has law µ. For a
measurable set A ⊂ Q let

g(A) := E[Z 11A(Z)] =
∫

A

x dµ(x).

And let c(A) for µ(A) > 0 denote the barycentre (center of gravity) of A with
respect to µ, i.e.

c(A) := E[Z |Z ∈ A] =
g(A)
µ(A)

=
1

µ(A)

∫

A

x dµ(x).

We write gi, ci for the i-th coordinate of g and c. To be able to prove the main
result of this part, we need 3 lemmata.

Lemma 1. Let µ(A) > 0 for any neighborhood A of 0. Then

lim
n→∞

Optn(µ) = ∞.

Proof. Let M > 1 be arbitrary, let A := [0, 1
M 1] and consider the policy Ψ which

selects all items with sizes in A unless the sum of the selected items would exceed
1. Then

Optn(µ) ≥ E(Ψ) ≥ M P
( n∑

j=1

11{Xj∈A} ≥ M
) → M,

since
∑n

j=1 11{Xj∈A} is binomially distributed with parameters n and µ(A) > 0.
Therefore lim

n→∞
Optn(µ) ≥ M and the claim follows as M was arbitrary.

If there is a neighborhood A of 0 in Q such that µ(A) = 0, we can almost surely
only select a bounded number of items. As this case doesn’t seem very interesting
in our asymptotical analysis we will exclude it from further consideration. From
now on let µ(A) > 0 for any neighborhood A of 0. For the asymptotic behavior of
Optn(µ) only the values of µ(A) for neighborhoods of 0 play a role.
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Lemma 2. Let A ⊂ Q be such that ci(A) ≤ s < 1 for (i = 1, 2, . . . , d).
Define A′ := {x ∈ A |x ≤ s2/31}. Then

µ(A′)
µ(A)

≥ 1− d s1/3 (3)

Remark: We will need this lemma for small s and a simplicial section A = ∆.
See also figure 1 on page 7.

Proof. For i = 1, . . . , d we have

s ≥ ci(A) =
1

µ(A)

∫

A

xi dµ(x) ≥ 1
µ(A)

∫

A∩{xi≥s2/3}

xi dµ(x) ≥ 1
µ(A)

s2/3µ(A∩{xi ≥ s2/3}).

This implies
µ(A ∩ {xi ≥ s2/3})

µ(A)
≤ s

1
3 . (4)

Now we get

1− µ(A′)
µ(A)

=
µ(A \A′)

µ(A)
≤

d∑

i=1

µ(A ∩ {xi ≥ s2/3})
µ(A)

≤ d s1/3

Lemma 3. (a Chernoff bound.) Let Z1, Z2, . . . , Zn be independent random vari-
ables with E [Zi] ≤ 1

n and 0 ≤ Zi ≤ a. Then we have for any natural number
m < n

P (
m∑

i=1

Zi > 1) ≤ exp [− δ2

2a
]

with δ := 1− m
n .

Proof. The proof follows the common idea of Chernoff bounds. By the Markov
inequality and because of the independence we have for any t > 0

p := P (
m∑

i=1

Zi > 1) ≤ e−tE [ exp(t
m∑

i=1

Zi)] = e−t
m∏

i=1

E [ etZi ].

As the function x 7→ etx is convex, we have etx ≤ 1 + x 1
a (eta − 1) for 0 ≤ x ≤ a.

Plugging in Zi for x in this general inequality and using 1 + x ≤ ex we get

p ≤ exp
[1
a
((1− δ)(eta − 1)− ta)

]

Now put t = − 1
a ln(1−δ) > 0. Simplifying and using ln(1−x) ≤ −x−x2/2 (0 ≤

x < 1) yields p ≤ exp(−δ2

2a ).

Next we will derive asymptotic results about Optn for n →∞. This is the main
result of this part.
We know Optn ≤ Prophn but it turns out that for large n the prophets policy is
not much better than the optimal online selection policy:

Theorem 1. Let µ be an absolutely continuous probability measure on Q = [0,1].
Let ∆ = ∆(n) be a simplicial section {x ∈ Q | 〈x, θ〉 ≤ 1} such that gi(∆) ≤ 1/n
and θi = 0 when gi(∆) < 1/n. Then
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(1)
Optn ∼ Prophn ∼ nµ(∆).

(2) Let

s :=
1

nµ(∆)
(5)

and ∆′ := {x ∈ ∆ |x ≤ s2/31}. Let Ψ be the following policy (which depends
on n).
Accept Xj if Xj ∈ ∆′ and the sum of the variables selected so far plus Xj is
still less than or equal to 1. But if this sum exceeds 1 in any coordinate then
reject Xj and all subsequent variables Xj+1, Xj+2, . . ..
Then Ψ is asymptotically optimal, i.e. E(Ψ) ∼ Optn.
Furthermore, for any ε > 0 we have the error bound

1− E(Ψ)
n µ(∆)

= O
(
s1/3−ε

)
as n →∞. (6)

Note: Theorem 3 of section 4 ensures that a ∆ like above always exists.

Proof. For the upper bound on Optn we will give an upper bound on Prophn

which we can reduce to the one-dimensional case. For the lower bound we will show
that Ψ asymptotically achieves the upper bound.

Upper Bound. Recall that, when choosing the variables Xi with i ∈ I, we had
to comply with the constraint ∑

i∈I

Xi ≤ 1. (7)

Define δ := (θ1 + θ2 + · · · + θd)−1 and set α := δ θ. Now consider the following
one-dimensional relaxation of (7)

∑

i∈I

〈Xi,α〉 ≤ 1. (8)

(7) implies (8) and intuitively, (8) means that – instead of staying in the cube
Q – the sum of the selected points must stay within a certain simplex given by a
hyperplane that goes through 1.
Now, let

Yi := 〈Xi,α〉 .
When selecting the Yi’s under the relaxed constraint

∑
i∈I Yi ≤ 1 the prophet will

do at least as good as under (7). Let F be the distribution function of the Yi’s.
Then F is continuous because µ has a density.
We apply the one-dimensional result from [11] to the sequence (Y1, Y2, . . .) to get
for n > 1/E [Y1]

Prophn ≤ nF (ε), (9)

for any ε such that ∫ ε

0

x dF (x) =
1
n

. (10)

We will show that ε = δ satisfies (10) and that F (δ) = µ(∆), then (9) implies
the upper bound Prophn

<∼nµ(∆), meaning that lim supn Prophn/(nµ(∆) ≤ 1.
The latter is clear because

F (δ) = P (Y1 ≤ δ) = P (〈X1, α〉 ≤ δ) = P (〈X1, θ〉 ≤ 1) = P (X1 ∈ ∆) = µ(∆).
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Now, we show that ε = δ satisfies (10).

∫ δ

0

x dF (x) = E [Y111{Y1≤δ}]

= E [〈X1, α〉 11{〈X1,α〉≤δ}]

= E [
d∑

j=1

αjX
(j)
1 11{X1∈∆}]

=
d∑

j=1

αjE [X(j)
1 11{X1∈∆}]

=
d∑

j=1

αjgj(∆)

=
d∑

j=1

αj
1
n

because gj(∆) = 1
n if αj 6= 0

=
1
n

We get the upper bound on Optn

Optn ≤ Prophn
<∼nµ(∆). (11)

Remark: As we know already that Optn →∞ by Lemma 1 we can now conclude
that nµ(∆) →∞ as well and therefore

s → 0 as n →∞ (12)

Lower Bound. First note that Ψ as defined in the theorem is an admissible
online selection policy. And so the optimal expected number of selected items is at
least E(Ψ):

Optn ≥ E(Ψ).

In this part we will show the error bound (6). Since s → 0 when n → ∞ this will
give us E(Ψ) ∼ nµ(∆). And together with the upper bound we get

nµ(∆) ∼ E(Ψ) ≤ Optn ≤ Prophn
<∼nµ(∆),

which proves the rest of the claim.

The stationary policy which uses ∆ instead of ∆′ as acceptance region seems
to be more natural. Unfortunately, it is not always asymptotically optimal when
d > 1. But the difference in measure between the two regions is asymptotically
negligible:
ci(∆) = gi(∆)/µ(∆) ≤ 1/(nµ(∆)) = s, so Lemma 2 gives us

µ(∆′)
µ(∆)

≥ 1− d s1/3, (13)

which converges to 1 as n →∞. We will need (13) later.
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Figure 1: With the policy Ψ a point is selected when it is in the hatched region ∆′. (s is
the largest coordinate of the barycentre of ∆.)

The upper bound on E(Ψ) is easy. Trivially, we have E(Ψ) ≤ E [
∑n

i=1 11{Xi∈∆′}] =
nµ(∆′) ≤ nµ(∆).

So 1− E(Ψ)/(nµ(∆)) ≥ 0.

Now, we turn to the lower bound on E(Ψ). Introduce the stopping time

ρ := inf {k |
k∑

i=1

Xi11{Xi∈∆′} 6≤ 1}

and set ρ = ∞ if no such k exists. Then the number of selected variables by our
strategy Ψ is

(ρ−1)∧n∑

i=1

11{Xi∈∆′},

where (ρ− 1) ∧ n denotes the minimum of n and ρ− 1. When using ρ ∧ n , which
is also a stopping time, instead of (ρ− 1) ∧ n as upper bound of the sum the error
is at most 1 and will be asymptotically negligible. By Wald’s equation

E(Ψ) ≥ E [
ρ∧n∑

i=1

11{Xi∈∆′}]− 1

= µ(∆′) · E [ρ ∧ n]− 1. (14)

For µ(∆′) we already have a bound. Now, we want to bound E[ρ ∧ n] from below.
We will use that

E [ρ ∧ n] ≥ mP (ρ > m) for any m < n (15)

and will have to choose m suitably. Note that

P (ρ ≤ m) = P (
m∑

i=1

Xi11{Xi∈∆′} 6≤ 1)

≤
d∑

j=1

P (
m∑

i=1

X
(j)
i 11{Xi∈∆′} > 1)

Now, apply Lemma 3 to Zi = X
(j)
i 11{Xi∈∆′} , a = s2/3 and m = bn(1 − s1/3−ε)c.

This is possible because E [Zi] = gj(∆′) ≤ gj(∆) ≤ 1
n and Zi ≤ a by definition of
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∆′.
We get with δ := 1− m

n ≥ s1/3−ε

P (ρ ≤ m) ≤ d exp [− δ2

2a
]

≤ d exp [−s2/3−2ε

2s2/3
]

= d exp [−1
2
s−2ε]

= O(s) as s → 0. (16)

Now we are ready to prove the rest.

1− E(Ψ)
nµ(∆)

≤ 1− µ(∆′)E [ρ ∧ n]− 1
nµ(∆)

(by inequality (14))

≤ 1− µ(∆′)
µ(∆)

m

n
P (ρ > m) + s (by inequality (15))

All three factors on the right-hand side are less than 1 (and converge to 1) and we
already have bounds for them. Use the inequality 1−abc ≤ (1−a)+(1−b)+(1−c),
which holds for all 0 ≤ a, b, c ≤ 1 and apply (13), the definition of m and (16) to
get

1− E(Ψ)
n µ(∆)

≤ ds
1
3 + O(s1/3−ε) + O(s) + s

= O(s1/3−ε).

3. Example

Consider a measure µ on Q with distribution function

F (x) = axα1
1 xα2

2 · · ·xαd

d

in a neighborhood U of 0, where a, α1, α2, . . . , αd are positive constants. This is the
direct generalization of the distributions studied in the paper of Coffman and al. [2]
to more than one dimension. This will also give the result for the Lebesgue-measure
on Q as a special case.

Theorem 2.

Optn ∼ γ · (an)1/(1+α) (17)

where

γ := (1 + α)
[
α1 · · ·αd Γ(α1) · · ·Γ(αd)

αα1
1 · · ·ααd

d Γ(2 + α)

]1/(1+α)

and α := α1 + α2 + · · ·+ αd. Γ here denotes the Gamma function.

Proof. Let θ > 0 be defined by θi := αi/α. Let ∆r := {x ∈ Q | 〈x, θ〉 ≤ r}.
Observe that there is a r0 > 0 such that for 0 < r < r0 we have ∆r ⊂ U . In the
following let 0 < r ≤ r0.
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Using Dirichlet’s formula for the integration we get

gi(∆r) =
∫

∆r

xi dµ(x)

= a

∫

∆r

α1α2 · · ·αd xi xα1−1
1 xα2−1

2 · · ·xαd−1
d dx

= a

(
rα

1 + α
γ

)1+α

.

Now, by choosing r = 1+α
γα (na)−1/(1+α), which is smaller than r0 for n large

enough, we get gi(∆r) = 1
n for i = 1, . . . , n. So the hypothesis for Theorem 1 is

satisfied with ∆ = ∆r. Very similar to above computation we can now compute

µ(∆r) =
1
n

γ(na)1/(1+α),

which gives the desired result.

We now get the one-dimensional example, F (x) = axα for some neighborhood of
0, as a special case. Plugging in the values we obtain for this case

Optn ∼
(

1 + α

α

) α
1+α

(an)1/(1+α).

Another example for µ is the d-dimensional Lebesgue-measure on Q, which gives

Optn ∼ γ · n 1
1+d with γ =

d + 1
((d + 1)!)1/(d+1)

,

which itself specializes to
√

2n in the one-dimensional case.

4. Sets of maximal volume under certain restrictions

In this part we will give the proof we left out in section 2. Theorem 3 below shows
that for an absolutely continuous measure µ on Q, there always is a simplicial section
∆ with the properties required in Theorem 1. As a side effect of this examination
we will get results about optimization problems addressed by Mallows, Nair, Shepp
and Vardi in [10].

The idea which leads to these questions is the following. In the selection problem
the simplest strategy seems to choose a fixed acceptance region A and accept all
the items with sizes in A as long as allowed by the sum constraint. We call this a
stationary strategy. If there was no constraint the expected number of selected items
would be nµ(A) and the expected space needed would be nE [X111A(X1)] = n·g(A).
It seems natural to try to use an A such that nµ(A) - or equivalently µ(A) - is
maximal under all A’s such that the expected space needed is less than or equal to 1.
It will turn out that such an A (which depends on n) indeed gives an asymptotically
optimal admissible strategy when n →∞.
In this part we will deal with the problem of determining the shape of A.
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Problem definition

Recall the definition of g(A) and c(A) on page 3. The problem of this section
will be an optimization problem:

(P1) maximize µ(A) on {A ⊂ Q |g(A) ≤ ρ, A measurable}

for some ρ > 0.
The solution of this problem will also give us a solution to the problem

(P2) maximize µ(A) on {A ⊂ Q | c(A) ≤ τ , A measurable}

for some τ > 0.
As the solutions are trivial for d = 1 we will assume that d > 1. Problem (P2) has
also been treated in [10]. Unfortunately, their proof, attributed to Andrew Odlyzko,
seems to have a gap when d > 2. We will use a different approach here. One that
yields an additional property of the solution that we require in the first part of this
paper.

It can be proved that these optimization problems actually have a solution (proof
omitted).

Shape of the solution

Definition 1. A set A ⊂ Rd
+ is a lower layer if x ∈ A, 0 ≤ y ≤ x implies y ∈ A.

Lemma 4. Let µ be absolutely continuous. If A is a solution to (P1) or (P2) then
A is a lower layer up to sets of measure 0.

Proof. Let A be a solution to (P1). Assume A was not equal to a lower layer up
to sets of measure 0. Then there would exists a y ∈ Q such that µ([y,1] ∩ A) > 0
and µ([0,y] ∩Ac) > 0.

To see this assume that y1,y2, ... was an enumeration of all the points in Q
with just rational coordinates and for each i we had µ([yi,1] ∩ A) = 0 or
µ([0,yi] ∩ Ac) = 0. If µ([yi,1] ∩ A) = 0 set N+

i = [yi,1] ∩ A otherwise set
N+

i = ∅ and set N−
i = [0,yi] ∩Ac if µ([0,yi] ∩Ac) = 0 otherwise let N−

i = ∅.
Then A′ := A

⋃
i N−

i \⋃
i N+

i differs from A just by a set of measure 0 and A′

is a lower layer:
If A′ was no lower layer then there were points a ≤ b, a 6= b with a 6∈ A′

and b ∈ A′. But then also a 6∈ A and b ∈ A and there existed an i such
that a ≤ yi ≤ b and a 6= yi 6= b. But then either a ∈ N+

i or b ∈ N−
i

contradicting that a 6∈ A′ and b ∈ A′.
As this was assumed to be not so above y must indeed exist.

As µ is absolutely continuous, we can choose sets D and E such that D ⊂ Ac, D < y
and E ⊂ A,E > y with µ(D) = µ(E) > 0. Then the set A′ = A \ E ∪D has the
same measure as A but g(A′) < g(A) ≤ ρ again because of the absolute continuity
of µ. But this contradicts the optimality of A, as A′ could be enlarged a little while
still satisfying the constraint.
The proof for A being a solution to (P2) is almost literally the same.

In their paper Mallows, Nair, Shepp and Vardi say that the solution to (P2) is
always a lower layer, even for an arbitrary probability measure µ. But the following
example shows that the hypothesis demanded here is necessary.

To see this consider the counterexample shown in figure 2. Let A contain a and c
but not b. Let µ be the probability measure which puts the masses ε, 1− 2ε, ε onto
the points a,b and c, respectively, for some very small ε. Then A is an optimal

10



a

A
c

τ

b

Figure 2: counterexample

solution for (P2) because every set containing the point b has a center of gravity
close to b and thus violates the constraint.
For arbitrary µ the solution to (P1) is also not always a lower layer.

A lower layer A is in particular starlike with respect to the origin, i.e. x ∈ A ⇒
rx ∈ A for 0 ≤ r ≤ 1.
We will describe a starlike region A by a function in polar coordinates in order to
be able to use calculus of variation.
Define a generalized polar coordinate transformation of the positive (and negative)
orthant

α : M ×R → Rd

(ϕ, r) = (ϕ1, . . . , ϕd−1, r) 7→ x = α(ϕ, r),

where M := [0, π
2 ]d−1 and x1 = r cos ϕ1, . . ., xd−1 = r sinϕ1 sin ϕ2 · · · sin ϕd−2 cos ϕd−1,

xd = r sin ϕ1 sin ϕ2 sin ϕd−1. I.e. the ϕi are angles between 0 and 90◦ and r is the
distance from the origin. Then x ranges over Rd

+ when r and ϕ range over R+

and M , respectively. We know that the functional determinant is det Dα(ϕ, r) =

rd−1 sind−2 ϕ1 sind−3 ϕ2 · · · sin ϕd−2 and does not vanish for r > 0 and ϕ ∈
◦

M .
Now, define the function R(ϕ) = sup{r | α(ϕ, r) ∈ A}. Then A ⊂ {α(ϕ, r) | ϕ ∈
M, 0 ≤ r ≤ R(ϕ)} and the two sets differ only by a set of measure 0. We have a
one-to-one correspondence up to sets of measure 0 between the starlike regions in Q
and positive functions in polar coordinates. We will call R the function describing
A.

In terms of R the measure µ(A) and the coordinates of g(A) are functionals J(R)
and Gj(R) (1 ≤ j ≤ d), respectively.

J(R) := µ(A)

=
∫

Rd

11A(x) f(x) dx

=
∫

M×R

11A(α(z)) f(α(z)) | detDα(z)| dz (transf. formula for
Lebesgue integrals)

=
∫

M

R(ϕ)∫

0

f(α(ϕ, r)) | detDα(ϕ, r)| dr dϕ (Fubinis theorem)

=
∫

M

F (ϕ, R(ϕ)) dϕ,
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where

F (ϕ, R) :=

R∫

0

f(α(ϕ, r)) | detDα(ϕ, r)| dr. (18)

Similarly,

Gj(R) := gj(A) =
∫

Rd

xj 11A(x) f(x) dx =
∫

M

Fj(ϕ, R(ϕ))dϕ,

where

Fj(ϕ, R) :=

R∫

0

αj(ϕ, r) f(α(ϕ, r)) | detDα(ϕ, r)| dr. (19)

Theorem 3. Given a probability measure µ on Q with a density f with respect to
Lebesgue measure and a ρ > 0 there is a simplicial section Â = {x ∈ Q | 〈x,θ〉 ≤ 1}
which solves (P1). That is, it maximizes µ(A) over all A ⊂ Q which have g(A) ≤ ρ.
The optimal region is unique up to sets of measure 0.
Furthermore, for all i ∈ {1, . . . , d} such that the i-th constraint is inactive, i.e.
gi(Â) < ρi, we have θi = 0.

Remark: In section 2 we only needed that there is a simplicial section satisfying
the constraint and the latter statement starting “Furthermore ...”. For the proof it
is not needed that it actually is optimal. Unfortunately, this weaker statement does
not seem to be easier to prove.

Proof. Step 1. First assume that the density f is continuous on Rd, f(x) > 0

for x in
◦
Q and f(x) = 0 for x 6∈ Q. In step 2 we will approximate the general

density f of µ by such continuous densities.
Let Â ⊂ Q be an optimal region and a lower layer given by the function R̂(ϕ). And
let A be any (measurable) starlike region, given by the function R.
We want to apply the generalized Kuhn-Tucker theorem (e.g. see [9]). Let H be
the vector space of all bounded measurable functions on M .
The optimal solution R̂ minimizes −J(R) (i.e maximizes J(R)) over all R ∈ H
satisfying the constraint

G(R)− ρ ≤ 0.

The fact that H contains functions R which attain negative values or do not describe
a subset of Q does not bring complications. If R is such that for some ϕ ∈ M
α(ϕ, R(ϕ)) 6∈ Q we can define R∗(ϕ) to be 0 if R(ϕ) is negative and maximal so
that α(ϕ, R∗(ϕ)) ∈ Q if R(ϕ) was too large. Recall that we have f(x) = 0 for
x 6∈ Q, so J(R) = J(R∗) and G(R) = G(R∗).
We have to show that J and G are Gateaux differentiable functionals on H and
that the variations are linear in their increments.
For any R, h ∈ H the Gateaux-variation of J at R with increment h is (if it exists)

δJ(R, h) =
d

dε
J(R + εh)

∣∣∣
ε=0

=
d

dε

∫

M

F (ϕ, R + εh) dϕ

∣∣∣∣
ε=0

. (20)

The integrand F (ϕ, R + εh) is differentiable with respect to ε: For every ϕ the
integrand in the definition of F

f(α(ϕ, r)) |det Dα(ϕ, r)|
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is continuous in r, since α, f and det Dα(ϕ, r) are continuous. And therefore we
get

d

dε
F (ϕ, R + εh) =

∂F

∂R
(ϕ, R + εh) h(ϕ)

= f(α(ϕ, R + εh)) |det Dα(ϕ, R + εh)|h(ϕ),

which is bounded in ϕ and ε. Therefore we can differentiate (20) by differentiating
the integrand and get

δJ(R, h) =
∫

M

f(α(ϕ, R)) | detDα(ϕ, R)|h(ϕ) dϕ. (21)

It was essential here that f is continuous.
In the same manner we get the Gateaux-variations of Gj (j = 1, . . . , d):

δGj(R, h) =
∫

M

αj(ϕ, R)f(α(ϕ, R)) | detDα(ϕ, R)|h(ϕ) dϕ. (22)

Since limits in Rd are defined component wise, we get
δG(R, h) = (δG1(R, h), . . . , δGd(R, h)) and we see that both δJ(R, h) and δG(R, h)
are linear in the increment h.
The last thing we need to show to be able to apply the theorem of Kuhn-Tucker is
that R̂ is a regular point of the inequality G(R)− ρ ≤ 0.
Since G(R̂) ≤ ρ it is sufficient to give an h ∈ H such that δG(R̂, h) < 0.
For this we can simply choose h(ϕ) = −1 for all ϕ ∈ M .
Now, by the Kuhn-Tucker theorem we have a θ = (θ1, . . . , θd) ≥ 0 such that the
Lagrangian

L(R) := 〈G(R)− ρ, θ〉 − J(R)

is stationary at R̂ and 〈
G(R̂)− ρ, θ

〉
= 0. (23)

As R̂ satisfies the constraint G(R̂)− ρ ≤ 0 and as θ ≥ 0, we can conclude by (23)
that

θi = 0 if gi(Â) = Gi(R̂) < ρi,

as desired.
It remains to prove that the simplicial section {x ∈ Q | 〈x, θ〉 ≤ 1} is an optimal
region.
By definition of a stationary point we have for every h ∈ H

0 = δL(R̂, h)

=
〈
δG(R̂, h),θ

〉
− δJ(R̂, h)

=
∫

M

(
〈
α(ϕ, R̂), θ

〉
− 1) f(α(ϕ, R̂)) |det Dα(ϕ, R̂)|

︸ ︷︷ ︸
=:l(ϕ)

h(ϕ) dϕ. (24)

Since h is arbitrary, we can use

h(ϕ) :=
{

1 , if l(ϕ) ≥ 0
−1 , if l(ϕ) < 0

Then l h is nonnegative and vanishes exactly when l vanishes. With (24) we conclude
that λ-almost surely l(ϕ) = 0.
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For α(ϕ, R̂) ∈
◦
Q, f(α(ϕ, R̂)) > 0 by hypothesis and detDα(ϕ, R̂) 6= 0. So, either

α(ϕ, R̂) ∈ ∂Q or 〈
α(ϕ, R̂), θ

〉
= 1

Let K be the hyperplane {x | 〈x, θ〉 = 1} (see Figure 3). Then
∂Â ={α(ϕ, R̂(ϕ)) |ϕ ∈ M} ⊂ (K ∩ Q) ∪ ∂Q. So as Â is a lower layer we must
have that Â = {x ∈ Q | 〈x, θ〉 ≤ 1} or Â = Q, which is a trivial simplicial section.

K

Q

^
A

Figure 3: The simplicial section Â

Step 2. Now, drop the additional assumptions made in step 1 about the density
f of µ. Let µ have the density f , which still is defined on Rd (that is f(x) = 0 a.s.

for x 6∈ Q), but does not need to be positive on
◦
Q or continuous.

Let f1, f2, . . . be a sequence of probability densities such that fn satisfies for every
n the hypothesis of part 1 and the sequence (fn) converges to f in L1, i.e.

• fn is continuous

• fn(x) > 0 for x ∈
◦
Q, fn(x) = 0 for x 6∈ Q

• ∫ |f − fn| dλ → 0

The existence of such a sequence of densities (fn) can be shown using the fact that
the set of continuous functions is dense with respect to the L1-norm in the set of
Lebesgue-integrable functions and the lemma of Urysohn.

Now define µn := fnλ for n = 1, 2, . . .. So µn is a probability measure on Q
with density fn and step 1 is applicable to µn. Also, for brevity, define gn(A) :=∫

A
x dµn(x) and cn(A) := gn(A)/µn(A) in analogy to g(A) and c(A).

Since fn → f in L1 we now have

µn(A) → µ(A) and gn(A) → g(A) (A ⊂ Q). (25)

Let ∆n = {x | 〈x, θ(n)
〉 ≤ 1} be the simplicial section from part 1. I.e., it is an

optimal region for the measure µn and A = ∆n maximizes µn(A) over gn(A) ≤ ρ.
The idea is that a subsequence of (∆n) converges to a simplicial section ∆ in such
a sense that we can conclude that this ∆ is optimal for the probability measure µ.
We will show that a subsequence of θ(n) converges in Rd to a vector θ.
First observe that, as ρ > 0, we can show that the θ(n)’s are bounded. Consider
the i-th coordinate of θ(n). By part 1, either θ

(n)
i = 0 or ρi = gn

i (∆n) ≤ cn
i (∆n) ≤

max{xi |x ∈ ∆n} ≤ 1/θ
(n)
i . So θ

(n)
i ≤ 1/ρi. With M := max

i
1/ρi we have θ(n) ∈

[0,M ]d.
Since this set is compact, there is a convergent subsequence of (θ(n)). Let θ ∈ Rd

+

be the limit. For simplicity of the notations assume that this subsequence was the
sequence (θ(n)) itself. Define

∆ := {x ∈ Q | 〈x, θ〉 ≤ 1}. (26)
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We will now show that λ(∆n ¦∆) converges to 0.
We can assume that θ 6= 0 (otherwise, ∆ = Q and as ∆n = Q for n large enough).
Let ‖θ‖, the euclidian norm of θ, be positive. By Cauchy-Schwarz’s inequality for
any ε > 0 there is an n0 such that for n > n0 | 〈x, θ〉 − 〈

x, θ(n)
〉| < ε (x ∈ Q).

Now, suppose x ∈ ∆ ¦ ∆n. Then 〈x, θ〉 ≤ 1 and
〈
x, θ(n)

〉
> 1 or the other way

around. In any way we get ∆¦∆n ⊂ {x ∈ Q | 〈x, θ〉 ∈ (1−ε, 1+ε)}. The Lebesgue-
measure of the right set converges to 0 when ε → 0, so limn→∞ λ(∆ ¦∆n) = 0. and
since µ is continuous with respect to the Lebesgue measure we also get

lim
n→∞

µ(∆ ¦∆n) = 0. (27)

As the mapping g : B(Q) → Rd is continuous with respect to the pseudo norm
(M1,M2) 7→ µ(M1 ¦M2) on B(Q) this implies that

g(∆n) → g(∆). (28)

Finally we show that A = ∆ maximizes µ(A) over g(A) ≤ ρ and gi(∆) < ρi ⇒ θi =
0.
Suppose for the sake of contradiction there was an A ⊂ Q with µ(A) > µ(∆) and
g(A) ≤ ρ. Then there also would be an A′ with µ(A) > µ(∆) and g(A) < ρ, because
we simply could take away from A a small subset B ⊂ A of positive measure.
We want to show that then some ∆n could not have been optimal. First observe
that

|µ(∆)− µn(∆n)| ≤ |µ(∆)− µ(∆n)|+ |µ(∆n)− µn(∆n)|
≤ µ(∆ ¦∆n) +

∫
|f − fn| dλ

→ 0 (29)

where we used (27) and made use of the choice of fn.
Similarly,

‖g(∆)− gn(∆n)‖ → 0. (30)

Now, define ε := µ(A′)− µ(∆) and choose n so large that

(1) gn(A′) < ρ (possible, since gn(A′) → g(A′) < ρ and by (25))

(2) µn(A′) > µ(A′)− ε
2 (possible by (25))

(3) µn(∆n) < µ(∆) + ε
2 . (possible by (29))

Then

µn(A′)
(2)
> µ(A′)− ε

2
= µ(∆) +

ε

2
(3)
> µn(∆n),

which contradicts together with (1) the assumption that ∆n was an optimal region
for the measure µn.
And suppose gi(∆) < ρi then g

(n)
i (∆n) < ρi for n large enough, because of (30).

This implies θ
(n)
i = 0 by step 1. So θi = lim

n→∞
θ
(n)
i = 0, too.

It remains to show that the optimal region is unique up to sets of measure 0. Let
∆ be as in (26) an optimal region and let B be any other optimal region. We will
show that µ(∆ ¦B) = 0.
Suppose µ(∆ ¦B) > 0. Then µ(B \∆) = µ(∆ \B) =: m > 0, as µ(∆) = µ(B).
We have

〈g(B),θ〉 − 〈g(∆), θ〉 =
∫

B\∆

〈x, θ〉 dµ(x)−
∫

∆\B

〈x, θ〉 dµ(x) (31)
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But for x ∈ B \∆ we have 〈x, θ〉 > 1 and for x ∈ ∆ \B we have 〈x,θ〉 ≤ 1. So the
right integral is at most m. Plugging this into (31) yields

〈g(B),θ〉 − 〈g(∆), θ〉 ≥
∫

B\∆

〈x, θ〉 − 1︸ ︷︷ ︸
>0

dµ(x) > 0

as µ(B \∆) > 0. We get

〈g(B), θ〉 > 〈g(∆), θ〉 = 〈ρ, θ〉 (32)

where the equation on the right holds because θi = 0 if gi(∆) 6= ρi. But (32) implies
that gi(B) > ρi for some i ∈ {1, . . . , d}, which is a contradiction. So µ(∆ ¦B) = 0.

Corollary 1. Given a probability measure µ on Q with a density f and given a
τ > 0 there is a simplicial section Â = {x ∈ Q | 〈x, θ〉 ≤ 1} which solves (P2).
That is, it maximizes µ(A) amongst all A ⊂ Q which have c(A) ≤ τ .
For all i such that the i-th constraint is inactive, i.e. ci(Â) < τi, we have θi = 0.
Furthermore, the optimal region is unique up to sets of measure 0.

Proof. Let A be a solution to (P2), i.e. c(A) ≤ τ and whenever c(A′) ≤ τ we
have µ(A′) ≤ µ(A). We have µ(A) > 0 because τ > 0. Define ρ > 0 by

ρ := µ(A)τ ∈ Q.

We will show that A also maximizes µ(A) under the restriction g(A) ≤ ρ.
First note that A satisfies this restriction since g(A) = µ(A)c(A) ≤ µ(A)τ = ρ.
Now, let A′ be any set such that g(A′) ≤ ρ. Then we have

µ(A′)c(A′) = g(A′)
≤ ρ

µ(A′)c(A′) = µ(A)τ (33)

Now, if c(A′) ≤ τ , we have µ(A′) ≤ µ(A) since µ(A) was maximal under that
condition.
And if c(A′) 6≤ τ there is at least one coordinate i such that ci(A′) > τi. But then
the i-th coordinate of inequality (33) tells us that µ(A′) ≤ µ(A).
Since A′ was arbitrary, A also maximizes µ(A) under the restriction g(A) ≤ ρ.
Because the solution to that problem is unique and a lower-layer, by Theorem 3,
we get that A is a simplicial section Â = {x ∈ Q | 〈x,θ〉 ≤ 1} up to sets of measure
0. And since µ(A) = µ(Â) we have θi = 0 for each i such that gi(Â) < ρi = µ(Â)τi.
Or equivalently,

θi = 0 if ci(Â) < τi.
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