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1.3

The study aims of this week.

1 understand the problem setting of gene finding
2 learn about algorithmic solutions: exon chaining, GHMMs
3 learn about pair HMMs

(used both for gene finding and alignments)
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Overview

1 Introduction to Gene-Finding-Problem
What Do Genes Look Like?
Statistical Features of Genes

2 Gene Finding Through Exon-Chaining
The One-Dimensional Chaining Problem
Exon-Chaining Algorithm

3 Gene Finding with HMMs
Generalized HMMs
Model Design
Training

4 Pair Hidden Markov Models
Definitions
Application: Comparative Gene Prediction
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1.5

Prokaryotes, Eukaryotes

Prokaryotes

Prokaryotes are the set of species that lack a cell nucleus.
{prokaryotes} = {bacteria} ∪ {archea}

Eukaryotes

Eukaryote are the set of species whose cells have a nucleus.
May be unicellular (e.g. some algae) or multicellular (plants
and animals).

Copyright by Jim Pisarowicz Copyright by Broad Institute
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1.6

Prokaryotes, Eukaryotes

• the structure of prokaryotic genes is less complex than
those of eukaryotes.

• prokaryotic gene finding is
• easier,
• algorithmically less interesting
• and can be considered a special case (missing introns).

• We will therefore restrict lecture to eukaryotes
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Structure of a eukaryotic gene

UTR = UnTranslated Region = part of mRNA that is not translated
CDS = CcoDing Sequence = part of mRNA (exon) that is translated

gene A

DNA

gene B

...actaatagacatctatttcgagtcaaggtgtaggcaatgtccttttttctagtcatggttggcaaacagtgggatcctgagagtcagataattgaattggctctgcctttaattatttgttcaagcaagcccctgtccctttaggtgggaatatgtatgagggaccatatttggggttctggtagctccacagggatgcggtgatgagcgctgaatttatgacgtactag...
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1.8

Translation

atg tat gag    ...     gga tga

Kodons

M Y E
Aminosäuren

Sequenz von G

DNA−Sequenz
kodierende

Translation

Faltung

...

nur am Ende

Protein

eines von 3 Stopp−Kodons,

“universeller”
genetischer Code

Kodon Amino-
(DNA) säure
aaa 7→ K
aac 7→ N
aag 7→ K
aat 7→ N

.

.

.

.

.

.
atg 7→ M

.

.

.

.

.

.
61 20
Kodons Amino-

säuren
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Signals

chr2L:

a fruitfly gene
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CG5001

donor (5’)

splice site

transcription

start site

transcription

termination site
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example from fruit fly
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intron→← exon

donor splice site (DSS) signal

exon→← intron

acceptor splice site (ASS) signal

Frequency of the nucleotides at positions relative to splice site.

from green algae Chlamydomonas
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Branch point: upstream of 3’ splice site, a single conserved adenine at variable
distance to 3’ splice site (≈ -30), a splicing complex binds to it, pyrimidine (C,T)
rich in human
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example from fruit fly

Transcription start site: Transcription from DNA to RNA by RNA polymerase
starts here facilitated by promoter elements.
Promoter elements are diverse and their profiles tend to contain little info:
• diverse transcription factor binding sites at very variable positions
• sometimes TATA-box
• “CpG islands”
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Transcription termination site (TTS):
• cleavage of the transcript.
• some non-templated A’s are appended (polyadenylation).
• polyadenylation is triggered in many species in many genes by the

hexamer aataaa roughly 15 bp upstream of the TTS.
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Start and stop codon:
• start codon: ATG
• stop codons: TAA, TAG, TGA

In some species the genetic code is altered and a “stop codon” is
actually coding for an amino acid.
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1.10

Nucleotide Composition of Coding and Noncoding Regions
Sequence Content

Besides the signals, position-unspecific frequencies of
nucleotide patterns can be used to guess biological
classification (e.g. CDS, non-coding, CpG-island) of longer
sequence intervals.

Example (GC content in red flour beetle)

Typically, higher order patterns are examined:
E.g. reading-frame dependent k -mer frequencies (k = 5,6) for
protein-coding regions.

Remark

Sequence content is usually only indirect evidence.
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1.11

Problems and General Ansatz

Problems

• known signal models do not carry much information

• false positive signals because of low number of true
positives

• sequence content can be misleading (pseudogenes,
repeats)

Ansatz

• combine all individual weak info to boost discriminatory
power

• enforce standard gene structure:
• reading frame consistency between exons
• minimal splice site consensus (GT/AG, maybe GC/AG)
• no in-frame stop codons
• minimal intron length (≈ 40 bp)
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1 Introduction to Gene-Finding-Problem
What Do Genes Look Like?
Statistical Features of Genes

2 Gene Finding Through Exon-Chaining
The One-Dimensional Chaining Problem
Exon-Chaining Algorithm

3 Gene Finding with HMMs
Generalized HMMs
Model Design
Training

4 Pair Hidden Markov Models
Definitions
Application: Comparative Gene Prediction
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1.13

This Section Also in My German Script

http://gobics.de/mario/genomanalyse/script.pdf
pages 28-32

http://gobics.de/mario/genomanalyse/script.pdf
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1.14

Problem Definition

Definition

Let B = {B1,B2, . . . ,Bn} be a set of intervals with boundaries
given by Bj = [`j , rj ) and `j < rj , (j = 1, . . . ,n).
Let sj ∈ R be the score of interval Bj .

A chain Γ = (Bj1 ,Bj2 , . . . ,Bjd ) is a sorted sequence of
non-overlapping intervals (i.e. rji ≤ `ji+1 ).
The score of a chain is the sum of the scores of its intervals:
s(Γ) =

∑d
i sji

Definition (One-dimensional Chaining Problem)

For a given set of scored intervals B find a chain with maximal
score.
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1.15

Example Chaining Problem

Example

B1 = [0,1), s1 = 1
B2 = [0,3), s2 = 2
B3 = [2,4), s3 = 2
B4 = [2,6), s4 = 2
B5 = [5,8), s5 = 3
B6 = [7,8), s6 = 2
B = {B1, . . . ,B6}

0 1 2 3 4 5 6 7 8
B1

1
B2

2

B3

2

B4

2

B5

3 B6

2

Γ = (B1,B3,B5) is the chain with maximal score.
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1.16

How to Solve the Chaining Problem?

• brute force too slow: There are 2n possible chains.

• greedy aproach does not correctly solve the problem:

Γ← ()
repeat

insert highest-scoring interval into Γ that does not
overlap any interval already in Γ

until no more interval can be inserted

trivial counterexample:

B1

2 B2

3

B3

2
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1.17

Chaining Algorithm

One-Dimensional Chaining Algorithm

1: P ← sort {`1, r1, `2, r2, . . . , `n, rn} increasingly
2: S ← q ← q1 ← · · · ← qn ← S1 ← · · ·Sn ← 0
3: while P not empty do
4: b ← remove smallest element in P
5: for all j such that rj = b do
6: if Sj > S then
7: S ← Sj
8: q ← j
9: end if

10: end for
11: for all j such that `j = b do
12: Sj ← sj + S
13: qj ← q
14: end for
15: end while
16: output S as score of best chain
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1.18

Chaining Algorithm

Backtracking

17: Γ← ()
18: while q 6= 0 do
19: push Bq onto Γ
20: q ← qq
21: end while
22: reverse order of Γ
23: output Γ as highest scoring chain
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1.19

Correctness

Invariants of the Algorithm

1 After very iteration of the main loop in line 3, S is the score
of the best chain without interval boundaries beyond b.

2 After every iteration of the main loop in line 3, Sj is the
score of the best chain, that ends with interval Bj
for all j with `j ≤ b.

Proof by induction on the iteration of the main loop in line 3.
It follows that after the last iteration S is the score of the overall
best chain.

Pointers for Backtracking

Unless undefined (qj = 0), qj is the index of the interval
immediately left of Bj in a best chain that contains Bj .
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1.20

Example Algorithm Run

Example

.After initialization (line 2):
P = (0,1,2,3,4,5,6,7,8)
S = 0
q = 0

0 1 2 3 4 5 6 7 8
B1,s1 = 1

B1,s2 = 2

B3,s3 = 2

B4,s4 = 2

B5,s5 = 3

B6,s6 = 2
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1.20

Example Algorithm Run

Example

.After 1st iteration of main loop (line 3):
S = 0
q = 0

0 1 2 3 4 5 6 7 8
B1,s1 = 1

S1 = 1, q1 = 0
B1,s2 = 2

S2 = 2, q2 = 0

B3,s3 = 2

B4,s4 = 2

B5,s5 = 3

B6,s6 = 2

b = 0
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1.20

Example Algorithm Run

Example

.After 2nd iteration of main loop (line 3):
S = 1
q = 1

0 1 2 3 4 5 6 7 8
B1,s1 = 1

S1 = 1, q1 = 0
B1,s2 = 2

S2 = 2, q2 = 0

B3,s3 = 2

B4,s4 = 2

B5,s5 = 3

B6,s6 = 2

b = 1
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1.20

Example Algorithm Run

Example

.After 3rd iteration of main loop (line 3):
S = 1
q = 1

0 1 2 3 4 5 6 7 8
B1,s1 = 1

S1 = 1, q1 = 0
B1,s2 = 2

S2 = 2, q2 = 0

B3,s3 = 2B3,s3 = 2

S3 = 3, q3 = 1

B4,s4 = 2B4,s4 = 2

S4 = 3, q4 = 1

B5,s5 = 3

B6,s6 = 2

b = 2
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1.20

Example Algorithm Run

Example

.After 4th iteration of main loop (line 3):
S = 2
q = 2

0 1 2 3 4 5 6 7 8
B1,s1 = 1

S1 = 1, q1 = 0
B1,s2 = 2

S2 = 2, q2 = 0

B3,s3 = 2B3,s3 = 2

S3 = 3, q3 = 1

B4,s4 = 2B4,s4 = 2

S4 = 3, q4 = 1

B5,s5 = 3

B6,s6 = 2

b = 3
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Example Algorithm Run

Example

.After 5th iteration of main loop (line 3):
S = 3
q = 3
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Example Algorithm Run

Example

.After 6th iteration of main loop (line 3):
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Example Algorithm Run

Example

.After 7th iteration of main loop (line 3):
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1.20

Example Algorithm Run

Example

.After 8th iteration of main loop (line 3):
S = 3
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1.20

Example Algorithm Run

Example

.After last iteration of main loop (line 3):
S = 6
q = 5
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1.20

Example Algorithm Run

Example

.Backtracking:
Follow qj pointers starting from q = 5 until q = 0.
Γ = (B1,B3,B5)

0 1 2 3 4 5 6 7 8
B1,s1 = 1

S1 = 1, q1 = 0
B1,s2 = 2

S2 = 2, q2 = 0
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S4 = 3, q4 = 1

B5,s5 = 3B5,s5 = 3

S5 = 6, q5 = 3
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S6 = 5, q6 = 3
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1.21

Running Time

Running Time

Sorting of interval boundaries (line 1):

O(n log n)
Overall time in main loop (lines 3-15): O(n)
Backtracking: O(n)
Overall running time: O(n log n)

Remarks:

• The linear running time of the main loop can be realized
when for each interval boundary in P a list of intervals
ending and starting at b is stored. For each interval the
loops 5-10 and 11-14 are then executed exactly once each
(amortized analysis).

• Special but important case: the intervals have integers as
boundaries (sequence positions) in the range 1..t
⇒ sorting can be done in O(t + n) using Bucket Sort
⇒ faster if t = o(n log n) (dense intervals)
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1.22

Simple Approach to Gene Finding

• only predict protein-coding part of genes (easier)

• interpret gene structure as chain of CDS
• gene boundaries are implied by CDS boundaries (stop

codon)
• CDS candidate defined by sequence (integer) interval

Bj = [`j , rj )
score j-th CDS candidate:

sj = score of signal at `j (e.g. ASS or start codon)
+ score of signal at rj (e.g. DSS or stop codon)
+ score of sequence content in [`j , rj )

• use chaining algorithm to find “best” exon chain
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1.23

Simple Approach to Gene Finding

Signal Score

A number s assigned to a sequence position p that is used to
decide whether the signal is present at p.
Usually: s = s(w), where w is a sequence window around p.
Aims:

1 The larger the score, the more likely is it that there is a
true signal.

2 s(w) is “small” for positions p without the signal.



Genvorhersage

Dr. Mario Stanke

Lernziele / Study Aims

Introduction to
Gene-Finding-Problem
What Do Genes Look Like?

Statistical Features of
Genes

Gene Finding Through
Exon-Chaining
The One-Dimensional
Chaining Problem

Exon-Chaining Algorithm

Gene Finding with
HMMs
Generalized HMMs

Model Design

Training

Pair Hidden Markov
Models
Definitions

Application: Comparative
Gene Prediction

1.24

Example Signal Score

Example (DSS position weight matrix)

p = candidate donor splice site position
w = seq window 2 pos upstream and 5 pos downstream of
DSS
Have position specific scoring matrix for DSS

m(i ,b) (i = 1,2, . . . ,7,b ∈ A,C,G,T),

m(i ,A) + m(i ,C) + m(i ,G) + m(i ,T) = 1

Have “background” distribution of nucleotides q(b)
q(A) + q(C) + q(G) + q(T) = 1

Define log-odds score: s = log
7∏

i=1
m(i ,wi )/q(wi )
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1.25

Example Content Score

Base composition is frame-dependent

f = 0
f = 1

f = 2

f = 0
f = 1

f = 2

f = 0
f = 1

f = 2

f = 0
f = 1

f = 2

f = 0
f = 1

f = 2

f = 0
f = 1

f = 2

f = 0
f = 1

f = 2

f = 0
f = 1

f = 2

nucleotide frequencies in human:
coding sequence noncoding

f = 0 f = 1 f = 2 all f sequence
A 0.248 0.291 0.146 0.229 0.26
C 0.264 0.243 0.351 0.286 0.24
G 0.321 0.201 0.312 0.278 0.24
T 0.166 0.265 0.190 0.207 0.26
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1.26

Example Content Score

Example (frame-dependent Markov chain of order k )

Let w be the DNA word of length n to be scored as CDS.
Let f ∈ {0,1,2} be the frame of the first position of w .

P(w) := pf (w1, . . . ,wk ) ·
n∏

i=k+1

pf (i)(wi |wi−k , . . . ,wi−1)

Here:
• pf is a start probability for the first k bases
• f (i) ∈ {0,1,2} such that f (i) ≡ f − 1 + i mod 3

is the frame of the i-th position of w

Define s(w) = log(P(w)/Q(w)),
where Q(w) is the probability of w in a “background” model
(e.g. non-coding).

Remark: division by background⇒ good exon candidates get
positive score
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1.27

Example Content Score - Continued

Example

w = ATTCTGC
frame f = 2, i.e. with these codon breaks: A‖TTC‖TGC
k = 2

P(ATTCTGC) = p2(AT)p1(T|AT)p2(C|TT)

p0(T|TC)p1(G|CT)p2(C|TG)

• if k ≥ 2 above content model can reflect codon usage
• typical: k = 4 or k = 5
• probabilities pr (x | y1, . . . , yk ) can be estimated on known

coding sequences
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1.28

Problems with Simple Approach

• reading frame consistency not enforced

• ⇒ output can be biologically “senseless”
• ⇒ less accurate when this info is ignored
• CDS candidates with negative score are never used

Need extension to chaining algorithm to enforce consistency.
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1.29

Consistent Chaining Problem

Definition

Let B = {B1,B2, . . . ,Bn} and s1, . . . , sn be as above.
In addition, let T be a finite set of types.

For every interval Bj let pre(j), suc(j) ∈ T be a predecessor
and successor type of interval j .
A chain Γ = (Bj1 ,Bj2 , . . . ,Bjd ) is consistent if

suc(j) = pre(j + 1), (j = 1, . . . ,n − 1).

Definition (Consistent Chaining Problem)

For a given set of scored, typed intervals B find a consistent
chain with maximal score.
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1.30

Consistent Chaining Algorithm

Consistent Chaining Algorithm (without Backtracking)

1: P ← sort {`1, r1, `2, r2, . . . , `n, rn} increasingly
2: Mt ← 0 for all t ∈ T // initialization
3: while P not empty do
4: b ← remove smallest element in P
5: for all j such that rj = b do
6: if Sj > Msuc(j) then
7: Msuc(t) ← Sj
8: end if
9: end for

10: for all j such that `j = b do
11: Sj ← sj + Mpre(j)
12: end for
13: end while
14: output max

t
Mt as score of best chain
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1.31

Consistent Chaining Algorithm

• algorithm maintains for each t the score Mt of the best
chain in which the last interval has successor type t and
ends at or before b

• backtracking very similar as in normal chaining algorithm
• running time still O(n log n) if T is considered a constant
• best chain can now include intervals with negative score
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1.31

Consistent Chaining Algorithm

• algorithm maintains for each t the score Mt of the best
chain in which the last interval has successor type t and
ends at or before b

• backtracking very similar as in normal chaining algorithm
• running time still O(n log n) if T is considered a constant

• best chain can now include intervals with negative score
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1.32

Exon Chaining/Assembly

Example (exon candidates in a DNA of length 2000)

http://monstre1.imim.es/courses

• color at left and right end (red, green, blue)
specify exon phase at left and right end

• arrow tips and heads denote start and stop codons

exon candidates of the program GENEID

http://monstre1.imim.es/courses
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1.33

Exon Chaining/Assembly

Can use Consistent Chaining Algorithm to assemble exon
candidates to genes.

exon candidates = intervals

Let T contain the following elements describing a transition
type between exons.

boundary gene boundary
f0+ codon on + strand is split right at boundary
f1+ codon on + strand is split after first base
f2+ codon on + strand is split after second base
f0- codon on - strand is split right at boundary
f1- codon on - strand is split after first base
f2- codon on - strand is split after second base

Define predecessor and successor types of exon candidates
so that consistency of chain implies biological consistency of
exon sequence.
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1.34

Consistent Exon Chain

Example

ATG *** CTA

suc(2) = f2+ = pre(3)

suc(1) = f0+ = pre(2) suc(3) = boundary = pre(4)

suc(4) = f2− = pre(5)

B B B B B3 51 2 4

***TAG* ******** * CAT**
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1.35

Issues of the Exon Chaining Approach

Problematic:

• introns are not modelled at all:
• no length distribution considered
• no difference to intergenic region

• UTRs: How can one accomodate for exons like these?
UTR CDS

• dividing by background probability implicitly assumes that
there are only two alternatives, e.g. exon↔ noncoding
but there are more than two alternatives for a region
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1.36

1 Introduction to Gene-Finding-Problem
What Do Genes Look Like?
Statistical Features of Genes

2 Gene Finding Through Exon-Chaining
The One-Dimensional Chaining Problem
Exon-Chaining Algorithm

3 Gene Finding with HMMs
Generalized HMMs
Model Design
Training

4 Pair Hidden Markov Models
Definitions
Application: Comparative Gene Prediction
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1.37

Reminder: Hidden Markov Model

HMM

• A HMM is a probabilistic model of a word
y = y1y2 · · · yn (“emission”) over some alphabet Σ and of a
state sequence x = (x1, x2, · · · , xn) over some discrete set
of states Q.

• The joint distribution of x and y is of the form

P(x , y) =
n∏

i=1

p(xi |xi−1) · p(yi |xi ),

where the p(xi |xi−1) are the transition probabilities of a
Markov chain and the p(yi |xi ) are alled emission
probabilities.

(x0 is a start state to simplify notation)
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1.38

Reminder: Hidden Markov Model

Algorithms

• In applications, normally y is observed and x is
unobserved/hidden.

• The Viterbi algorithm computes a most likely state
sequence x̂ ∈ arg maxx P(x |y) in time O(n).

• The Forward algorithm can be used to compute P(x , y) in
time O(n).

• The Forward and Backward algorithms can be used to
compute posterior probabilities P(xi = q|y) in time O(n).
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Reminder: Hidden Markov Model

Algorithms

• In applications, normally y is observed and x is
unobserved/hidden.

• The Viterbi algorithm computes a most likely state
sequence x̂ ∈ arg maxx P(x |y) in time O(n).

• The Forward algorithm can be used to compute P(x , y) in
time O(n).

• The Forward and Backward algorithms can be used to
compute posterior probabilities P(xi = q|y) in time O(n).
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Reminder: Hidden Markov Model

Algorithms

• In applications, normally y is observed and x is
unobserved/hidden.

• The Viterbi algorithm computes a most likely state
sequence x̂ ∈ arg maxx P(x |y) in time O(n).

• The Forward algorithm can be used to compute P(x , y) in
time O(n).

• The Forward and Backward algorithms can be used to
compute posterior probabilities P(xi = q|y) in time O(n).
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1.39

Reminder: Generalized Hidden Markov Model

Why GHMMs?

• A HMM is a special case of a GHMM.

• In gene finding and for alignment tasks
GHMMs are often used because

1 they allow a detailed modelling of the length distribution of
exons and other biological intervals

2 they accomodate for “silent” or “delete” states required to
model alignment gaps
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Why GHMMs?

• A HMM is a special case of a GHMM.
• In gene finding and for alignment tasks

GHMMs are often used because

1 they allow a detailed modelling of the length distribution of
exons and other biological intervals

2 they accomodate for “silent” or “delete” states required to
model alignment gaps
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Reminder: Generalized Hidden Markov Model

Why GHMMs?

• A HMM is a special case of a GHMM.
• In gene finding and for alignment tasks

GHMMs are often used because
1 they allow a detailed modelling of the length distribution of

exons and other biological intervals

2 they accomodate for “silent” or “delete” states required to
model alignment gaps
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Reminder: Generalized Hidden Markov Model

Why GHMMs?

• A HMM is a special case of a GHMM.
• In gene finding and for alignment tasks

GHMMs are often used because
1 they allow a detailed modelling of the length distribution of

exons and other biological intervals
2 they accomodate for “silent” or “delete” states required to

model alignment gaps
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1.40

Definition: Generalized Hidden Markov Model

Definition (Parse)

Let y = y1y2 · · · yn, Σ,Q be as before.
A parse x of y is a sequence

x = ((q1, v1), (q2, v2), . . . , (qt , vt )),

with qi ∈ Q, vi ∈ N0 such that v1 ≤ v2 ≤ · · · ≤ vt = n.

2 vq

d

qv11qv = 00
v

y1 y2 y3 v1
y

2 ii

i−1y(v  

i

vt

ny

t−1vi−1v

, v ]i

qt

• observe that y decomposes via x into
y = y(v0, v1]y(v1, v2] · · · y(vn−1, vn] (v0 := 0)

• we say that state “qi ends at vi ”
• we call di := vi − vi−1 the length of the i-th emission
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Definition (Parse)
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• observe that y decomposes via x into
y = y(v0, v1]y(v1, v2] · · · y(vn−1, vn] (v0 := 0)

• we say that state “qi ends at vi ”
• we call di := vi − vi−1 the length of the i-th emission
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Definition (Parse)
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• we say that state “qi ends at vi ”
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Definition (Parse)
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• observe that y decomposes via x into
y = y(v0, v1]y(v1, v2] · · · y(vn−1, vn] (v0 := 0)

• we say that state “qi ends at vi ”

• we call di := vi − vi−1 the length of the i-th emission
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Definition: Generalized Hidden Markov Model

Definition (Parse)

Let y = y1y2 · · · yn, Σ,Q be as before.
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• observe that y decomposes via x into
y = y(v0, v1]y(v1, v2] · · · y(vn−1, vn] (v0 := 0)

• we say that state “qi ends at vi ”
• we call di := vi − vi−1 the length of the i-th emission
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1.41

Definition: Generalized Hidden Markov Model

Definition (GHMM)

A GHMM is a joint distribution of a word y and a parse x of y of
the form

P(x , y) =
t∏

i=1

Ptrans(qi |qi−i ) · Pemi(y(vi−1, vi ]|qi ),

where Ptrans(·|q) is a probability distribution
(transition probabilities) over Q for all q ∈ Q and where
Pemi(·|q) is a probability distribution (emission probabilities)
over Σ∗ for all q ∈ Q.

q0 is a special start state

Σ∗ = {all strings with letters in Σ} (includes empty string)

Remark: We explicitly allow di = 0. A state q with Pemi(ε|q) = 1
is called a silent state (ε is the empty string of length 0).
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1.42

Delineation of HMM

When is a GHMM called a HMM?

• A HMM is a GHMM in which di ≡ 1 for all i , i.e. all
emissions are a single character. In that special case the
parse x can be identified with the state sequence, which
has the same length as y

• Sometimes in the literature a GHMM, in which di ∈ {0,1},
is still called a HMM only with some special modifications
to the algorithms. Example: “delete” state in profile HMMs
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1.43

Algorithms for GHMM

Algorithms

1 Usually, the word y is observed.
Now: A concatenation of the emissions, not the sequence
of emissions.
Contrast to HMM: The emissions cannot be inferred from
y alone.

2 x is unobserved, neither the states nor their boundaries
are known.

3 Analogous Viterbi, Forward and Backward algorithms
exists that all run in O(n2). Important special case: they
run in O(n) if all di are bounded from above by a constant.

4 A prerequisite for points 3 above is that no loops of states
with just empty-word-emissions are possible.
We will ensure that by the design of the model topology.
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with just empty-word-emissions are possible.
We will ensure that by the design of the model topology.
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1.44

A Simple GHMM for Gene Finding: Model Topology

Model for (multiple) eukaryotic genes on forward strand:

IR

I1 I2I0

TERMSINGLEEXON1 EXON2

EXON0

EXON0

EXON1 EXON2
INT− INT−INT−

INI− INI− INI−

(Arrows denote the transitions with non-zero transition probability.)
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1.45

What (Most) Eukaryotic Species Have in Common?

In Common:

• same genetic code, including start and stop codons

• genes can have introns, may have many
• genes rarely overlap in sequence
• introns start almost always with GT, end with AG

(some introns GC/AG)
• more non-coding sequence than coding sequence
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1.46

How Species-Specific Must Gene Finding Models Be?

Differences:

• distribution at signals, e.g. branch point region

top: human / bottom: fly

• GC content highly variable
• number and length distribution of introns
• length distribution of UTRs
• gene density
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1.46

How Species-Specific Must Gene Finding Models Be?

Differences:

• distribution at signals, e.g. branch point region
• GC content highly variable
• number and length distribution of introns

top: human / bottom: C. elegans
chr21: 33250000 33260000 33270000 33280000 33290000 33300000 33310000 33320000 33330000 33340000 33350000 33360000 33370000
HUNK

chrII: 15005000 15010000 15015000 15020000 15025000 15030000 15035000
Y53F4B.10

Y53F4B.9
Y53F4B.11 Y53F4B.12

Y53F4B.13

• length distribution of UTRs
• gene density
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How Species-Specific Must Gene Finding Models Be?

Differences:
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1.47

Training: Estimate Species-Specific Parameters

“Training Set”

• input: set of annotated sequences

(x (k), y (k))k=1,...,N ,

such that the parse x (k) represents the gene structure of
DNA sequence y (k).

• frequently a few hundred genes constructed from cDNA
alignments
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1.48

1 Introduction to Gene-Finding-Problem
What Do Genes Look Like?
Statistical Features of Genes

2 Gene Finding Through Exon-Chaining
The One-Dimensional Chaining Problem
Exon-Chaining Algorithm

3 Gene Finding with HMMs
Generalized HMMs
Model Design
Training

4 Pair Hidden Markov Models
Definitions
Application: Comparative Gene Prediction
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1.49

Pair HMM versus standard HMM

Pair HMM

• same concept of hidden states

• two observed sequences y and z instead of just one
• an association between character pairs yi and zj is usually

sought but a priori not known
• typical Bioinformatics applications:

alignments, comparative gene finding
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1.50

Biparse

Definition (Biparse)

Let Q be a finite set (of states).
Let y = y1y2 · · · yn and z = z1z2 · · · zm be two sequences over
an alphabet Σ of lengths n and m, respectively.
A biparse x of y and z is a sequence

x = ((q1, v1,w1), (q2, v2,w2), . . . , (qt , vt ,wt )),

with qi ∈ Q, vi ,wi ∈ N0 such that
v1 ≤ v2 ≤ · · · ≤ vt = n and w1 ≤ w2 ≤ · · · ≤ wt = m.

• a biparse segments 2 sequences into the same number of
segments

• each segment pair y(vi−1, vi ], z(wi−1,wi ] corresponds a
single state qi
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1.51

Definition: Pair HMM

Definition (Pair HMM)

A Pair HMM is a joint distribution of two words y and z and a
biparse x of them of the form

P(x , y , z) =
t∏

i=1

Ptrans(qi |qi−i ) · Pemi(y(vi−1, vi ], z(wi−1,wi ]|qi ),

where Ptrans(·|q) is a probability distribution (transition probs)
over Q for all q ∈ Q and where
Pemi(·|q) is a probability distr. (emission probs) over Σ∗ ×Σ∗ for
all q ∈ Q.

q0 ∈ Q is a special start state

• Analogous to GHMM, just 2 “simultaneous” emissions
instead of 1.

• In practice, Pemi often is symmetric:
Pemi(a,b|q) = Pemi(b,a|q) (fewer parameters to train)
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1.52

Viterbi Algorithm for Pair HMMs

Definition (Viterbi Variables)

For q ∈ Q,0 ≤ ` ≤ n,0 ≤ r ≤ m define the Viterbi variable

γq,`,r := max
x biparse

that ends in
(q, `, r)

P(x , y(0, `], z(0, r ]).

Interpretation

γq,`,r is the probability of the most likely parse
of y up to ` and of z up to r that ends in state q.
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1.53

Viterbi Recursion

Viterbi Recursion

γq,`,r = max
q′ ∈ Q

0 ≤ `′ ≤ `
0 ≤ r ′ ≤ r

γq′,`′,r ′Ptrans(q|q′)Pemi(y(`′, `], z(r ′, r ]|q)

Here, for convenience we define

γq0,0,0 = 1, γq,0,0 = 0 ∀q 6= q0.

Assumption

Never the empty string is emitted simultaneously in both
sequences:

Pemi(ε, ε|q) = 0 ∀q ∈ Q

• is anyway the case in our applications
• is sufficient condition that the Viterbi recursion can be

iteratively computed
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Assumption

Never the empty string is emitted simultaneously in both
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Pemi(ε, ε|q) = 0 ∀q ∈ Q

• is anyway the case in our applications
• is sufficient condition that the Viterbi recursion can be

iteratively computed



Viterbi Algorithm for Pair HMMs
1: initialize γq0,0,0 ← 1, γq,0,0 ← 0 ∀q ∈ Q \ {q0}
2: for ` = 0 to n do
3: for r = 0 to m do
4: for all q ∈ Q do
5: if ` 6= 0 or r 6= 0 then
6: update γq,`,r according to Viterbi recursion
7: pre(q, `, r)← (q′, `′, r ′) // arg max from Viterbi recursion
8: end if
9: end for

10: end for
11: end for
12: // backtracking starts
13: x ← ()
14: q ← arg maxq′∈Q γq′,n,m, `← n, r ← m
15: while ` > 0 or r > 0 do
16: add (q, `, r) at front of x
17: (q, `, r) = pre(q, `, r)
18: end while
19: output x as a best biparse of y and z



Running Time

• in general:

O(n2m2)

• if emissions are bounded by d :
Pemi (w ,w ′|q) = 0, ∀w ,w ′ ∈ Σ∗ : |w | > d or |w ′| > d ,∀q ∈ Q
we can shortcut recursion:

γq,`,r = max
q′ ∈ Q

max{0, `− d} ≤ `′ ≤ `
max{0, `− d} ≤ r ′ ≤ r

γq′,`′,r ′Ptrans(q|q′)Pemi(y(`′, `], z(`′, `]|q)

then running time is O(d2nm)

• very important special case d = 1: running time = O(nm)

• further heuristics to reduce running time possible:
compute Viterbi recursion only for subset of (`, r) ∈ (0,n]× (0,m],
assume it vanishes elsewhere
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1.56

Conservation of Gene Structure and Sequence

Observation

Protein sequences and rough structure of genes are often
conserved between species that are tens of millions of years
separated.

Example (Human-Mouse: 75 million years)

• 95% of orthologous gene pairs have same number of
exons in human and mouse

• coding sequence to ≈ 85% identical
--->

Gaps
Human
Mouse

GCAC T T T T C T T A A AGGA A AGT A A TGGACC A GTGA AGGTGTGGGGA AGCA T T A A AGGAC T G AC TGA AGGCC TGCA TGGA T T CC A TGT T CA T GAGT T TGGAGA T A A T ACAGCAGGTGGGTG T
E S N G P V K V W G S I K G L T E G L H G F H V H E F G D N T A GSOD1

4
GCAC T T T T C T T A A AGGA A AGT A A TGGACC A GTGA AGGTGTGGGGA AGCA T T A A AGGAC T G AC TGA AGGCC TGCA TGGA T T CC A TGT T CA T GAGT T TGGAGA T A A T ACAGCAGGTGGGTG T
GT A T T T T T - A T CA AGGCA AGCGGTGA ACC A GT TGTGT TGT CAGGACA A A T T ACAGGA T T A AC TGA AGGCCAGCA TGGGT T CC ACGT CCA T C AGT A TGGGGACA A T ACACA AGGT AGGT C C

• noncoding sequence to ≈ 35% identical
chr21:

--->

Gaps
Human
Mouse

33035890 33035900 33035910 33035920 33035930 33035940 33035950 33035960 33035970 33035980 33035990
AGTGTGGGA ACA AGA T T ACCA T C T CCC T T T TGAGGACACAGGCC T AGAGCAGT T A AGCA GC T TGC TGGAGGT T CAC TGGC T AGA A AGTGG T CAGCC TGGGA T T TGGAC ACAGA T T T T T C C

SOD1
4 3 3 6

AGTGTGGGA AC A AGA T T ACCA T C T CCC T T T TGAGGACACAGGCC T AGAGCAGT T A AGCA GC T TGC TGGAGGT T CAC TGGC T AGA A AGTGG T CAGCC TGGGA T T TGGACACAGA T T T T T C C
AGTGT T AGGAGA A - - - - GTG - - - - - - - - - T GGGAGAGAGAGGCC T - - - AGAGC TGAGCG T - - - - C T CC AGAGCCAC - - - CC TGT AGGA A G T GGGT C T AGGA T C TGA AC A T AGG T T T T T T T
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1.56

Conservation of Gene Structure and Sequence

Observation

Protein sequences and rough structure of genes are often
conserved between species that are tens of millions of years
separated.

Example (Human-Mouse: 75 million years)

• 95% of orthologous gene pairs have same number of
exons in human and mouse

• coding sequence to ≈ 85% identical
--->

Gaps
Human
Mouse

GCAC T T T T C T T A A AGGA A AGT A A TGGACC A GTGA AGGTGTGGGGA AGCA T T A A AGGAC T G AC TGA AGGCC TGCA TGGA T T CCA TGT T CA T GAGT T TGGAGA T A A T ACAGCAGGTGGGTG T
E S N G P V K V W G S I K G L T E G L H G F H V H E F G D N T A GSOD1

4
GCAC T T T T C T T A A AGGA A AGT A A TGGACC A GTGA AGGTGTGGGGA AGCA T T A A AGGAC T G AC TGA AGGCC TGCA TGGA T T CCA TGT T CA T GAGT T TGGAGA T A A T ACAGCAGGTGGGTG T
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1.57

A Simple Pair HMM for Eukaryotic Gene Finding

Start−
kodon

Stopp−
kodon

 IR

Intron0 Intron1 Intron2

Kodons

z1gt
y1gt

gt
gt

ag
ag

agy3
agz3

agy2y3
agz2z3

z1z2gt
y1y2gt

• assume 1-to-1
correspondence between
exons

• all states emit 2
sequences

• -shaped states emit
fixed-length and
equal-length seqs

• splice site and “Kodon”
states accomodate for
conservation between the
two species
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