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The study aims of this week.

@ understand the problem setting of gene finding
® learn about algorithmic solutions: exon chaining, GHMMs

® learn about pair HMMs
(used both for gene finding and alignments)
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Prokaryotes, Eukaryotes

Prokaryotes

Prokaryotes are the set of species that lack a cell nucleus.
{prokaryotes} = {bacteria} U {archea}

Eukaryotes

Eukaryote are the set of species whose cells have a nucleus.
May be unicellular (e.g. some algae) or multicellular (plants
and animals).
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Prokaryotes, Eukaryotes

o the structure of prokaryotic genes is less complex than
those of eukaryotes.
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Prokaryotes, Eukaryotes

o the structure of prokaryotic genes is less complex than
those of eukaryotes.
e prokaryotic gene finding is
e easier,
¢ algorithmically less interesting
e and can be considered a special case (missing introns).
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Structure of a eukaryotic gene

UTR = UnTranslated Region = part of mRNA that is not translated
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Signals

transcription translation donor (57) acceptor (3”) transcription
start site start site splice site splice site termination site
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nd (stop codon)
afruitfly gene
chr2l:  [11919001191905]1191910[1191915/1191920 1191925/ 1191930| 1191935| 1191940| 1191945| 1191950| 1191955| 1191960| 1191965| 1191970 1191975 1191980] 1191985|
~->GGTCTCAAGAGCGGAGGTATGCCAACACACCATTAAGTACCATTCCCATAGCTAACCTTGAAATGCTGACTTGCAGGCACACGAAACGGCGGTCCGT
FlyBase Protein-Coding Genes
casoo G I
donor (57) branch point acceptor (37) e from fruit
lice site R Lo example from fruit fly
splhice s region splice site
— exon intron — «— intron eXOﬂ —
donor splice site (DSS) signal acceptor splice site (ASS) signal

Frequency of the nucleotides at positions relative to splice site.

from green algae Chlamydomonas
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transcription translation donor (57) acceptor (3”) transcription
start site start site splice site splice site termination site
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Branch point: upstream of 3’ splice site, a single conserved adenine at variable
distance to 3’ splice site (=~ -30), a splicing complex binds to it, pyrimidine (C,T)
rich in human
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transcription translation donor (57) acceptor (3”) transcription
start site start site splice site splice site termination site
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chr2l:  [11919001191905]1191910[1191915/1191920 1191925/ 1191930| 1191935| 1191940| 1191945| 1191950| 1191955| 1191960| 1191965| 1191970 1191975 1191980] 1191985|
~>GGTCTCAAGAGCGGAGGTATGCCAACACACCATTAAGTACCATTCCCATAGCTAACCT TGAAATGCTGACTTGCAGGCACACGAAACGGCGGTCCGT

FlyBase Protein-Coding Genes

casoo1 I
donor (57)

branch point acceptor (3’)

. : A . example from fruit fly
splice site region splice site

Transcription start site: Transcription from DNA to RNA by RNA polymerase
starts here facilitated by promoter elements.
Promoter elements are diverse and their profiles tend to contain little info:

¢ diverse transcription factor binding sites at very variable positions
e sometimes TATA-box
e “CpG islands”
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transcription translation donor (57) acceptor (3”) transcription
start site start site splice site splice site termination site
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~>GGTCTCAAGAGCGGAGGTATGCCAACACACCATTAAGTACCATTCCCATAGCTAACCT TGAAATGCTGACTTGCAGGCACACGAAACGGCGGTCCGT

FlyBase Protein-Coding Genes

casoo G I
donor (57)
splice site

branch point acceptor (3’)

. . example from fruit fly
region splice site

Transcription termination site (TTS):
¢ cleavage of the transcript.
e some non-templated A’s are appended (polyadenylation).

e polyadenylation is triggered in many species in many genes by the
hexamer aataaa roughly 15 bp upstream of the TTS.
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transcription translation donor (57) acceptor (3”) transcription
start site start site splice site splice site termination site
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~>GGTCTCAAGAGCGGAGGTATGCCAACACACCATTAAGTACCATTCCCATAGCTAACCT TGAAATGCTGACTTGCAGGCACACGAAACGGCGGTCCGT

FlyBase Protein-Coding Genes

casoo G I
donor (57)
splice site

branch point acceptor (3’)

. . example from fruit fly
region splice site

Start and stop codon:
e start codon: ATG
e stop codons: TAA, TAG, TGA

In some species the genetic code is altered and a “stop codon” is
actually coding for an amino acid.
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Nucleotide Composition of Coding and Noncoding Regions
Sequence Content

Besides the signals, position-unspecific frequencies of
nucleotide patterns can be used to guess biological
classification (e.g. CDS, non-coding, CpG-island) of longer
sequence intervals.

Example (GC content in red flour beetle)

ChLGX
7170k 7180k 7190k
NA/GC Content

W‘W““\’\W WWW]

TL‘U(‘S TCO10857-1 RA

Typically, higher order patterns are examined:
E.g. reading-frame dependent k-mer frequencies (k = 5, 6) for
protein-coding regions.

Remark
Sequence content is usually only indirect evidence.
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Problems and General Ansatz

Problems

e known signal models do not carry much information
o false positive signals because of low number of true
positives

e sequence content can be misleading (pseudogenes,
repeats)

Ansatz

e combine all individual weak info to boost discriminatory
power

o enforce standard gene structure:

reading frame consistency between exons

minimal splice site consensus (GT/AG, maybe GC/AG)

no in-frame stop codons

minimal intron length (= 40 bp)



Genvorhersage

Cc TCCE
A
o R

Lernziele / Study Aims

moscions @) Gene Finding Through Exon-Chaining

What Do Genes Look Like?

% The One-Dimensional Chaining Problem
sos Exon-Chaining Algorithm

The One-Dimensional
Chaining Problem

Exon-Chaining Algorithm

Gene Finding with
HMMs

Generalized HMMs
Model Design

Training
Pair Hidden Markov
Models

Definitions

Application: Comparative
Gene Prediction



gemomersage This Section Also in My German Script

Dr. Mario Stanke

ECC TCCE
Wit el

Lernziele / Study Aims

Introduction to
Gene-Finding-Problem
What Do Genes Look Like?

Statistical Features of
Genes

_ http://gobics.de/mario/genomanalyse/script.pdf
Tho One-Dimenionl pages 28-32

Chaining Problem
Exon-Chaining Algorithm

Gene Finding with
HMMs

Generalized HMMs
Model Design

Training
Pair Hidden Markov
Models

Definitions

Application: Comparative
Gene Prediction


http://gobics.de/mario/genomanalyse/script.pdf

Genvorhersage

Dr. Mario Stanke

lcc TCCE
Wit el

Lernziele / Study Aims

Introduction to

Gene-Finding-Problem
What Do Genes Look Like?
Statistical Features of
Genes

Gene Finding Through
Exon-Chaining

Exon-Chaining Algorithm

Gene Finding with
HMMs

Generalized HMMs
Model Design

Training
Pair Hidden Markov
Models

Definitions

Application: Comparative
Gene Prediction

Problem Definition

Definition

Let B={By, By, ..., B,} be a set of intervals with boundaries
givenby Bj=[{,)and ¢, <, (j=1,...,n).

Let s; € R be the score of interval B;.
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Problem Definition

Definition

Let B={By, By, ..., B,} be a set of intervals with boundaries
givenby Bj=[{,)and ¢, <, (j=1,...,n).

Let s; € R be the score of interval B;.

AchainT = (B, B,,...,B;,) is a sorted sequence of
non-overlapping intervals (i.e. r; < ¢;.,).

The score of a chain is the sum of the scores of its intervals:

sN=7s
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Problem Definition

Definition

Let B={By, By, ..., B,} be a set of intervals with boundaries
givenby B = [¢;,r;)and ¢; <rj, (j=1,...,n).

Let s; € R be the score of interval B;.

AchainT = (B, B,,...,B;,) is a sorted sequence of
non-overlapping intervals (i.e. r; < ¢ .).

The score of a chain is the sum of the scores of its intervals:

s(N) =Y{'s;

Definition (One-dimensional Chaining Problem)

For a given set of scored intervals 5 find a chain with maximal
score.
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Example Chaining Problem

Example
B1 = [0 1),81 =1
B, =10,3),5, =2
By =[2,4),s3=2
B4— [2 6),3422
Bs =15,8),55 =3
BG— [7 8),56 =2
B={Bi,...,Bs}
2
2 Ba 2
1 B 2 3 B
B; Bs Bs
0 1 2 3 4

I = (Bi, Bs, Bs) is the chain with maximal score.



Genvorhersage

Dr. Mario Stanke

G TEC

AT
Vit eein

Lernziele / Study Aims

Introduction to
Gene-Finding-Problem
What Do Genes Look Like?

Statistical Features of
Genes

Gene Finding Through
Exon-Chaining

Exon-Chaining Algorithm

Gene Finding with
HMMs

Generalized HMMs
Model Design

Training

Pair Hidden Markov
Models

Definitions

Application: Comparative
Gene Prediction
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e brute force too slow: There are 2" possible chains.
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e brute force too slow: There are 2" possible chains.
e greedy aproach does not correctly solve the problem:
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Exon-Chaining insert highest-scoring interval into I that does not
overlap any interval already in I

until no more interval can be inserted
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Application: Comparative
Gene Prediction
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e brute force too slow: There are 2" possible chains.
e greedy aproach does not correctly solve the problem:

Introduction to

Gene-Finding-Problem
What Do Genes Look Like?
Statistical Features of r — ( )

Genes
repeat

insert highest-scoring interval into I that does not
p—— overlap any interval already in I’

Gene Finding with until no more interval can be inserted
HMMs

Generalized HMMs

Model Design

e 3

Training —
Pair Hidden Markov trivial counterexample: 2 B, 2
Models

Definitions

Application: Comparative B1 BS

Gene Prediction

Gene Finding Through
Exon-Chaining
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Chaining Algorithm

One-Dimensional Chaining Algorithm

-
S

11:
12:
13:
14:

15

16:

RO BN

end if
end for

g<—4q
end for
: end while

: P —sort{ly,r,lo, 12, ..
- S — qQ— Q1 -
: while P not empty do
b «— remove smallest element in P
for all j such that r; = b do
if S; > Sthen
S S
q—]J

., 4n, Iy} increasingly
—Qne— S —---S5,<0

for all j such that /; = b do
Sj — S+ S

output S as score of best chain
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Chaining Algorithm

Backtracking

17:
18:
19:
20:
21:
22:
23:

()
while g # 0 do
push By onto I
g < Qqq
end while
reverse order of [
output I' as highest scoring chain
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Correctness

Invariants of the Algorithm

@ After very iteration of the main loop in line 3, S is the score
of the best chain without interval boundaries beyond b.

@ After every iteration of the main loop in line 3, S; is the
score of the best chain, that ends with interval B;
for all j with /; < b.

Proof by induction on the iteration of the main loop in line 3.
It follows that after the last iteration S is the score of the overall
best chain.

Pointers for Backtracking

Unless undefined (g; = 0), g; is the index of the interval
immediately left of B; in a best chain that contains B,.
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Example

After initialization (line 2):
=(0,1,2,3,4,5,6,7,8)

0
0

P
S
q

By,54 = 2

B1,Sg =2

Bs,s6 =2

B1,S1 =1 83,33 =2
0 1 2 3 4

Bs,s5 = 3

6

7 8
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Example

After 1st iteration of main loop (line 3):

S=0
q=0

B4,S4 =2

BG,SG =2

( 1 2

Bs,s5 = 3
6 7 8
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Example

After 2nd iteration of main loop (line 3):

S=1
q=1

$|=2,2=0

Si=1,91 0

B4,S4 =2

Bs,s6 =2

Bi,s1 =1
0 ] 2

Bs,s5 = 3

6

7 8
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Example

After 3rd iteration of main loop (line 3):

S=1
q=1

S=2,q

S, =38,q4 =1

B4,S4 =2

40

Bi,s2 =

Si=1,91=0

Y

S3=8,q3=1

BG,SG =2

B1,S1 = T
0 1

B3,s3 =2

Bs,s5 = 3

6

7 8
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Example Algorithm Run

After 4th iteration of main loop (line 3):

b=3

S, =38,q4 =1
B4,S4:2
$:=2,00=0
Bi,sp — 2 Bo,Ss = 2
Si=1,q1=0 S3=38l{gs =1
By,s1 = 1 B3,S: =2 Bs,s5 = 3
1 2 3 4 5 6 7 8
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Gene-Finding-Problem

What Do Genes Look Like? q = 3
Statistical Features of

Genes

Gene Finding Through

Exon-Chaining

Si=3,q4=1

Exon-Chaining Algorithm Ba,sd =2
54 =

Gene Finding with $:=2,00=0
HMMs R
Generalized HMMs Bi,s0 =2 Bs,ss =2
Model Design Si=1,91=0 S3=38,q3 =1
Training
Pair Hidden Markov Bi,si =1 B3,s3 =2 Bs,s5 = 3

Models

Definitions 0 1 2 3 4 5 6 7 8

Application: Comparative b =4
Gene Prediction
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Lemziele/ sy ams  After 6th iteration of main loop (line 3):

Introduction to S = 3
Gene-Finding-Problem

What Do Genes Look Like? q = 3
Statistical Features of

Genes

Gene Finding Through

Exon-Chaining

S, =38,q4 =1

Exon-Chaining Algorithm Ba,ss =2
54 =

Gene Finding with $=2,0=0

HMMs —

Generalized HMMs Bi,s0 =2 Bs,5s = 2

Model Design Si=1,91=0 S3=3,03=1 S5=6,05 =3

Training

Pair Hidden Markov Bi,s1 =1 Bs,s3 =2 Bs.s5 =3

Models

Definitions 0 1 2 3 4 6 7 8

Application: Comparative b = 5
Gene Prediction

53
A2
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Example Algorithm Run

Example

After 7th iteration of main loop (line 3):
S=3
qg=3

S, =38,q4 =1
B4,S4:2
$=2,0=0
B1,Sg =2 BG,SG =2
31:1,(71:0 53:3,Q3:1 35:6.(]5:3
Bi,s1 =1 B3,83 =2 Bs,s5 = 3
0 1 2 3 4 5 () 7 8
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Example Algorithm Run

Example

After 8th iteration of main loop (line 3):

S=3
q=3

If

S, =38,q4 =1
B4,S4:2
8=2,2=0 Ss|= 5, g6
B1,52:2 BG,Ss=2
Si=1,q1=0 S3=8,q3=1 S5 =6,05 F
B1,S1 = T B3,83 =2 Bs,S5 =33
0 1 2 & 4 6 T

7
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Example

After last iteration of main loop (line 3):

S=6
q=>5

S, =38,q4 =1
B4,S4:2
S =2,q0=0 Ss =5,06 + 3
B1,52:2 Bs,Sf;:E
Si=1,q1=0 S3=3,03 =1 S5 =6,05 =3
B1,S1 =1 B3,83:2 55,35:3
0 1 2 4 6 7 &
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Example

Backtracking:

Follow g; pointers starting from g = 5 until g = 0.
= (B1 5 B37 B5)

S, =38,q4 =1
B4,S4:2
S =2,q0=0 Ss=5,06 =3
Bi,sp =2 Bs,s6 =2
S$i=1,q1=0 &= 5=8,03 =1 = S5=6,05=3
By,s1 = 1 B3,83:2 55,35:3
0 1 2 S 4 5 6 7 8
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Running Time

Sorting of interval boundaries (line 1):
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Running Time

Sorting of interval boundaries (line 1): O(nlog n)
Overall time in main loop (lines 3-15): O(n)
Backtracking: O(n)

Overall running time: O(nlog n)
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ceneFinding:Problem - Qyerall running time: O(nlog n)

What Do Genes Look Like?

Statistical Features of
Genes

Gene Finding Through Remarks:

Exon-Chaining

e The linear running time of the main loop can be realized

Exon-Chaining Algorithm

Gene Finding with when for each interval boundary in P a list of intervals
N ending and starting at b is stored. For each interval the
M Dosin loops 5-10 and 11-14 are then executed exactly once each

(amortized analysis).

Pair Hidden Markov
Models

Definitions

Application: Comparative
Gene Prediction
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ceneFinding:Problem - Qyerall running time: O(nlog n)
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Statistical Features of
Genes

Gene Finding Through Remarks:

Exon-Chaining

e The linear running time of the main loop can be realized
T when for each interval boundary in P a list of intervals

S e ending and starting at b is stored. For each interval the

Model Design loops 5-10 and 11-14 are then executed exactly once each
e (amortized analysis).

todes e Special but important case: the intervals have integers as
prpsioniConesaiy boundaries (sequence positions) in the range 1..t

= sorting can be done in O(f + n) using Bucket Sort

= faster if t = o(nlog n) (dense intervals)

Exon-Chaining Algorithm

Pair Hidden Markov
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o interpret gene structure as chain of CDS
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only predict protein-coding part of genes (easier)
interpret gene structure as chain of CDS
Gene-Finding-Problem

gene boundaries are implied by CDS boundaries (stop
Sumi el codon)

Genes

Introduction to

e e i o CDS candidate defined by sequence (integer) interval
Exon-Chaining B: — [g r.)
The One-Dimensional ] / s .
e score j-th CDS candidate:
Gene Finding with .
e s; = score of signal at /; (e.g. ASS or start codon)
sy + score of signal at r; (e.g. DSS or stop codon)
Pair Hidden Markov + score of sequence content in [¢;, ;)
Models

Definitions

Application: Comparative
Gene Prediction
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Simple Approach to Gene Finding

e only predict protein-coding part of genes (easier)
o interpret gene structure as chain of CDS

e gene boundaries are implied by CDS boundaries (stop
codon)

e CDS candidate defined by sequence (integer) interval
By =14, 1)
score j-th CDS candidate:

s; = score of signal at /; (e.g. ASS or start codon)
+ score of signal at r; (e.g. DSS or stop codon)
+ score of sequence content in [¢;, ;)

e use chaining algorithm to find “best” exon chain
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Introduction to Slgnal Score

Gene-Finding-Problem

waiocenesLookLie? A nUMber s assigned to a sequence position p that is used to

Statistical Features of

Genes decide whether the signal is present at p.

e e v Usually: s = s(w), where w is a sequence window around p.
The One-Dimensional A| ms:

Chaining Problem C

Gene Finding with @ The larger the score, the more likely is it that there is a
HMs true signal.

Generalized HMMs
Model Design

o @ s(w) is “small” for positions p without the signal.

Pair Hidden Markov
Models

Definitions

Application: Comparative
Gene Prediction
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Example Signal Score

Example (DSS position weight matrix)

p = candidate donor splice site position

w = seq window 2 pos upstream and 5 pos downstream of
DSS

Have position specific scoring matrix for DSS

m(i, b)
m(i,A) + m(i,C) + m(i,G) + m(i,T) = 1

AGGTGAG

Have “background” distribution of nucleotides q(b)
q(A) +q(C) + q(G) + q(T) =1

(i=1,2,...,7,be ACGT),

1=

7
Define log-odds score: s = log [T m(i, w;)/q(w;)
i=1
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Example Content Score

Base composition is frame-dependent

f=2 f=2 f=2 f=2 f=2 = f=2 f=
f=1 f=1 f=1 f=1 f=1 f=1 f=1 f=1
,:Ol f:Ol f:Ol ,:Ol f:Ol f:Ol ,:Ol f:Ol
4 4 4 4 4 4 4 4
A T T A A A 6 o A o T o a o T o A A o o o G T o

nucleotide frequencies in human:

coding sequence noncoding

f=0 f=1 f=2| allf | sequence
A [ 0248 0.291 0.146 | 0.229 0.26
C | 0.264 0.243 0.351 | 0.286 0.24
G | 0.321 0.201 0.312 | 0.278 0.24
T | 0.166 0.265 0.190 | 0.207 0.26
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Example Content Score

Example (frame-dependent Markov chain of order k)

Let w be the DNA word of length n to be scored as CDS.
Let f € {0, 1,2} be the frame of the first position of w.

n
W) - H Priiy (Wi | Wik, . . .,
i=K+1
e pr is a start probability for the first k bases
e f(i) €{0,1,2} suchthat f(i)=f—1+/ mod 3
is the frame of the j-th position of w
Define s(w) = log(P(w)/Q(w)),
where Q(w) is the probability of w in a “background” model
(e.g. non-coding).

P(w) := pe(w, ..., Wi_1)

Here:

Remark: division by background = good exon candidates get
positive score
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Example Content Score - Continued

Example
w =ATTCTGC

frame f = 2, i.e. with these codon breaks: A||TTC|TGC

k=2

P(ATTCTGC) =

p2(AT)p1 (T|AT)p(C[TT)
Po(T|TC)p1 (GICT)p2(C[TG)

e if k > 2 above content model can reflect codon usage

o typical: k=4o0rk=5

e probabilities p,(x | y1, ...

coding sequences

, Yk) can be estimated on known
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Problems with Simple Approach
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Problems with Simple Approach

reading frame consistency not enforced

= output can be biologically “senseless”

= less accurate when this info is ignored

CDS candidates with negative score are never used

Need extension to chaining algorithm to enforce consistency.
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Definition

Let B={Bi,B,,...,B,} and sq,..., s, be as above.
In addition, let T be a finite set of types.
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Let B={Bi,B,,...,B,} and sq,..., s, be as above.
In addition, let T be a finite set of types.

For every interval B; let pre(j), suc(j) € T be a predecessor
and successor type of interval j.



Genvorhersage Consistent Chaining Problem

Dr. Mario Stanke

ECC TCCE

AVH|JAATTA

ATI/VECAA Definition

temzele[SudyAms | et B = {Bjy, By,..., By} and sy, ..., s, be as above.

Introduction to

cene-FndngProbem 1N @ddition, let T be a finite set of types.

st For every interval B; let pre(j), suc(j) € T be a predecessor
cenes and successor type of interval j.

Gene Finding Through

Exon-Chaining Achainl = (B;,B,,,...,B,,) is consistent if

The One-Dimensional
Chaining Problem

suc(j) =pre(j+1), (j=1,....n—1).
Gene Finding with

HMMs

Generalized HMMs
Model Design

Training

Pair Hidden Markov
Models

Definitions

Application: Comparative
Gene Prediction



Genvorhersage

Dr. Mario Stanke

ECC TCCE
Vi el

Lernziele / Study Aims

Introduction to
Gene-Finding-Problem
What Do Genes Look Like?

Statistical Features of
Genes

Gene Finding Through
Exon-Chaining

The One-Dimensional
Chaining Problem

Gene Finding with
HMMs

Generalized HMMs
Model Design

Training

Pair Hidden Markov
Models

Definitions

Application: Comparative
Gene Prediction

Consistent Chaining Problem

Definition
Let B={Bi,B,,...,B,} and sq,..., s, be as above.
In addition, let T be a finite set of types.

For every interval B; let pre(j), suc(j) € T be a predecessor
and successor type of interval j.

Achainl = (B;,B,,,...,B,,) is consistent if

suc(j) =pre(j+1), (j=1,....,n—1).

Definition (Consistent Chaining Problem)

For a given set of scored, typed intervals B find a consistent
chain with maximal score.



Genvorhersage Consistent Chaining Algorlthm

Dr. Mario Stanke

CC TCC
EAT AATTA Consistent Chaining Algorithm (without Backtracking)
XTT[1VECAA

1: P<—sort {¢1,r,0o,12,...,¢n, I} increasingly
Lernziele / Study Aims TR .
raduston o 2: My — Ofor all t € T //initialization
Gene-Finding-Problem 3: while P not empty do
What Do Genes Look Like? .
Statistioal Features of 4: b+ remove smallest element in P
Genes .
Gene Finding Through 5: f0|: all j such that r; = b do
Exon-Chaining 6: |f S > M ; then
The One-Dimensional j SUC(])
Chaining Problem 7: Msuc(t) — Sj
Gene Finding with 8: end If
ALY 9: end for
Generalized HMMs .
Model Design 10:  forall j such that /; = b do
Training
Pair Hidden Markov 11 Sf — Sf + Mpfe(f)
Models 12:  end for
Definitions .
e D 13: end while

Gene Prediction

14: output mtax M; as score of best chain

1.30
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Consistent Chaining Algorithm

e algorithm maintains for each t the score M; of the best
chain in which the last interval has successor type t and
ends at or before b
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Consistent Chaining Algorithm

e algorithm maintains for each t the score M; of the best
chain in which the last interval has successor type t and
ends at or before b

o backtracking very similar as in normal chaining algorithm
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1.32

Exon Chaining/Assembly

Example (exon candidates in a DNA of length 2000)

e color at left and right end (red, green, blue)
specify exon phase at left and right end

arrow tips and heads denote start and stop codons

exon candidates of the program GENEID


http://monstre1.imim.es/courses
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1.33

Exon Chaining/Assembly

Can use Consistent Chaining Algorithm to assemble exon
candidates to genes.

exon candidates = intervals

Let T contain the following elements describing a transition
type between exons.

boundary
fO+

f1+

f2+

fO-

f1-

f2-

gene boundary

codon on + strand is split right at boundary
codon on + strand is split after first base
codon on + strand is split after second base
codon on - strand is split right at boundary
codon on - strand is split after first base
codon on - strand is split after second base

Define predecessor and successor types of exon candidates
so that consistency of chain implies biological consistency of
exon sequence.
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Issues of the Exon Chaining Approach

Problematic:

e introns are not modelled at all:

¢ no length distribution considered
¢ no difference to intergenic region

¢ UTRs: How can one accomodate for exons like these?
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1.37

Reminder: Hidden Markov Model

HMM

o A HMM is a probabilistic model of a word
Y = V1Yo - ¥n (“emission”) over some alphabet ¥ and of a
state sequence x = (xq, X2, - - - , Xp) over some discrete set
of states Q.

e The joint distribution of x and y is of the form

n

P(x,y) = [ [ p(xilxi—1) - p(Yil X)),

i=1

where the p(x;|x;_1) are the transition probabilities of a
Markov chain and the p(y;|x;) are alled emission
probabilities.

(Xo is a start state to simplify notation)
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1.38

Reminder: Hidden Markov Model

Algorithms

o In applications, normally y is observed and x is
unobserved/hidden.

e The Viterbi algorithm computes a most likely state
sequence X € argmaxy P(x|y) in time O(n).

e The Forward algorithm can be used to compute P(x, y) in
time O(n).
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1.38

Reminder: Hidden Markov Model

Algorithms

o In applications, normally y is observed and x is
unobserved/hidden.

e The Viterbi algorithm computes a most likely state
sequence X € argmaxy P(x|y) in time O(n).

e The Forward algorithm can be used to compute P(x, y) in
time O(n).

e The Forward and Backward algorithms can be used to
compute posterior probabilities P(x; = g|y) in time O(n).



Genvorhersage

Dr. Mario Stanke

G TEC

AT
Vit eein

Lernziele / Study Aims

Introduction to
Gene-Finding-Problem
What Do Genes Look Like?

Statistical Features of
Genes

Gene Finding Through
Exon-Chaining

The One-Dimensional
Chaining Problem

Exon-Chaining Algorithm

Gene Finding with
HMMs

Model Design

Training

Pair Hidden Markov
Models

Definitions

Application: Comparative
Gene Prediction

1.39

Reminder: Generalized Hidden Markov Model

Why GHMMs?

o A HMM is a special case of a GHMM.
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Reminder: Generalized Hidden Markov Model

Why GHMMs?

o A HMM is a special case of a GHMM.

¢ In gene finding and for alignment tasks
GHMMs are often used because
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1.39

Reminder: Generalized Hidden Markov Model

Why GHMMs?

o A HMM is a special case of a GHMM.

¢ In gene finding and for alignment tasks
GHMMs are often used because

@ they allow a detailed modelling of the length distribution of
exons and other biological intervals
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1.39

Reminder: Generalized Hidden Markov Model

Why GHMMs?

o A HMM is a special case of a GHMM.

¢ In gene finding and for alignment tasks
GHMMs are often used because
@ they allow a detailed modelling of the length distribution of
exons and other biological intervals
® they accomodate for “silent” or “delete” states required to
model alignment gaps
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Definition: Generalized Hidden Markov Model

Definition (Parse)

Lety = y1y2---yn, ¥, Q be as before.
A parse x of y is a sequence

X = ((qh V1)a (CI2, V2)7 000y (qh Vf))’

with g € Q,vi e Ngsuchthat vy < v <--- < v, =n.



Genvorhersage

Dr. Mario Stanke

lcc TCCE
Vi el

Lernziele / Study Aims

Introduction to
Gene-Finding-Problem
What Do Genes Look Like?

Statistical Features of
Genes

Gene Finding Through
Exon-Chaining

The One-Dimensional
Chaining Problem

Exon-Chaining Algorithm

Gene Finding with
HMMs

Model Design

Training

Pair Hidden Markov
Models

Definitions

Application: Comparative
Gene Prediction

Definition: Generalized Hidden Markov Model

Definition (Parse)

Lety = y1y2---yn, ¥, Q be as before.
A parse x of y is a sequence

X = ((qh V1)a (CI2, V2)7 000y (qh Vf))’

with g € Q,vi e Ngsuchthat vy < v <--- < v, =n.

vo=0 q M| 92 Vo Vil 9i Vi

Vi1

9i W

Vil - y(Vi-y, Vil

%

o—dia
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Model Design -— dia

Training

Pair Hidden Markov e observe that y decomposes via x into

Models

Detntons y =y(vo,vily(va, Vo] -+ y(Va—1, Vi] (v :=0)

Application: Comparative « »

Gene Prediction e we say that state “q; ends at v;
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Definition: Generalized Hidden Markov Model

Definition (Parse)
Lety = y1y2---yn, ¥, Q be as before.
A parse x of y is a sequence
X = ((q17 V1)’ (q2? V2)7 ey (qh VT))a
with g € Q,vi e Ngsuchthat vy < v <--- < v, =n.

vo=0 Qi V| 92 Vo Viy qi Vi Vi1

9i W

Y1‘Y2‘Y3‘

¥ y(Vies Vil

%

o—dia

e observe that y decomposes via x into

y =y(Vo,ly(vs, ve] -~ y(Va1, Vi] (vo :=0)
e we say that state “qg; ends at v;”
e we call d; := v; — v;_1 the length of the j-th emission
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Definition: Generalized Hidden Markov Model

Definition (GHMM)

A GHMM is a joint distribution of a word y and a parse x of y of
the form

H'Dtrans(QI|QI I)
i=1

where Pians(+|q) is a probability distribution

(transition probabilities) over Q for all g € Q and where
Pemi(:|q) is a probability distribution (emission probabilities)
over X* forall g € Q.

X y) eml(}/(vi71avi]|QI)a

Qo is a special start state
>* = {all strings with letters in X} (includes empty string)

Remark: We explicitly allow d; = 0. A state q with Pemi(e|q) = 1
is called a silent state (e is the empty string of length 0).
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Algorithms for GHMM

Algorithms

© Usually, the word y is observed.
Now: A concatenation of the emissions, not the sequence
of emissions.
Contrast to HMM: The emissions cannot be inferred from
y alone.

® x is unobserved, neither the states nor their boundaries
are known.

©® Analogous Viterbi, Forward and Backward algorithms
exists that all run in O(n?). Important special case: they
run in O(n) if all d; are bounded from above by a constant.
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Algorithms for GHMM

Algorithms

© Usually, the word y is observed.
Now: A concatenation of the emissions, not the sequence

of emissions.
Contrast to HMM: The emissions cannot be inferred from
y alone.

® x is unobserved, neither the states nor their boundaries
are known.

©® Analogous Viterbi, Forward and Backward algorithms
exists that all run in O(n?). Important special case: they
run in O(n) if all d; are bounded from above by a constant.
® A prerequisite for points 3 above is that no loops of states
with just empty-word-emissions are possible.
We will ensure that by the design of the model topology.
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A Simple GHMM for Gene Finding: Model Topology

Model for (multiple) eukaryotic genes on forward strand:

(Arrows denote the transitions with non-zero transition probability.)
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How Species-Specific Must Gene Finding Models Be?

Differences:

e distribution at signals, e.g. branch point region

top: human / bottom: fly
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Pair HMM versus standard HMM

Pair HMM

e same concept of hidden states
o two observed sequences y and z instead of just one

e an association between character pairs y; and z; is usually
sought but a priori not known

e typical Bioinformatics applications:
alignments, comparative gene finding
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1.50

Biparse

Definition (Biparse)

Let Q be a finite set (of states).

Lety =y1¥o---ypand z = zyz> - - - zy; be two sequences over
an alphabet X of lengths n and m, respectively.

A biparse x of y and z is a sequence

X = ((q‘l? Vi, W1)7 (q27 Vo, W2)7 RN (qta Vi, Wf)),

with g; € Q, v;, w; € Ny such that
vi<w<---<vp=nandw; <we <--- < wp=m.
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1.50

Biparse

Definition (Biparse)

Let Q be a finite set (of states).

Lety =y1yo---ynand z = 21z, - - - zy, be two sequences over
an alphabet X of lengths n and m, respectively.
A biparse x of y and z is a sequence

X = ((qh Vi, W1)7 (q27 Vo, W2)7 RN (CIt, Vi, Wt)),

with g; € Q, v;, w; € Ny such that
vi<w<---<vp=nandw; <we <--- < wp=m.

e a biparse segments 2 sequences into the same number of
segments

e each segment pair y(v;_1, vi], z(w;_1, w;] corresponds a
single state g;
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1.51

Definition: Pair HMM

Definition (Pair HMM)

A Pair HMM is a joint distribution of two words y and z and a
biparse x of them of the form

t
P(x,y,z) = H Prans (9ilQi-7) - Pemi(y (Vi1 vil, 2(wi—1, i q1),

i=1

where Pians(¢|q) is @ probability distribution (transition probs)
over Q for all g € Q and where

Pemi(:|q) is a probability distr. (emission probs) over X* x L * for
allg e Q.

Qo € Qis a special start state

¢ Analogous to GHMM, just 2 “simultaneous” emissions
instead of 1.

e In practice, Pem Often is symmetric:
Pemi(a, b|q) = Pemi(b, alq) (fewer parameters to train)
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1.52

Viterbi Algorithm for Pair HMMs

Definition (Viterbi Variables)

Forge Q,0 < /¢ < n,0 < r < mdefine the Viterbi variable

Tg.br = max P(X,y(O,ﬂ],Z(O, f])
X biparse
that ends in
(g,¢r)
Interpretation

vq.0,r is the probability of the most likely parse
of y up to ¢ and of z up to r that ends in state q.
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1.53

Viterbi Recursion
Viterbi Recursion

Yq.t,r =

Yg',e',r Prrans (91G") Pemi(y (¢, €], 2(r', r]|q)

Here, for convenience we define

V0,00 = 1,

vg,00 =0 Vg # qo.
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1.53

Viterbi Recursion

Viterbi Recursion

Yq.t,r =

0
0

Yq' e r! Ptrans(qm/)Pemi(,V(é/: E]a Z(rl7 r]|q)

/

Q

ax

€Q
<t
r<r

INIA

Here, for convenience we define

Assumption

Y90,0,0 = 1, 79,00 =0 Vq # qo.

Never the empty string is emitted simultaneously in both

sequences:

Pemi(€7€|q) =0 Vqge Q
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1.53

Viterbi Recursion

Viterbi Recursion
Yq,6,r = Y001 Prrans(91Q") Pemi(y (€', €], 2(r', r]1q)

/

Q

ax
€Q
V<
r <

0 L
0 r

INIA

Here, for convenience we define

Y9,0,0 = 1, 79,00 =0 Vq # qo.

Assumption

Never the empty string is emitted simultaneously in both
sequences:
Pemi(e,€/]q) =0 Vqe Q

e is anyway the case in our applications

e s sufficient condition that the Viterbi recursion can be
iteratively computed



N aR N2

Viterbi Algorithm for Pair HMMs

. initialize Ygo,0,0 < 1, Yq,0,0 < 0 Vq S Q\ {qo}
:for/=0tondo
for r =0to mdo
forall g € Qdo
if £ £0o0rr+#0then
update ~g.¢,r according to Viterbi recursion
pre(q,t,r) — (q',¢',r") I/ argmax from Viterbi recursion
end if
end for
end for
: end for
. // backtracking starts
s x =)
D g argmaxgeq Vg, am, L Nr—m

: while/>0orr>0do

add (q, ¢, r) at front of x
(9,4,r) = pre(q,(,r)

: end while
: output x as a best biparse of y and z
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e in general:



Running Time

e in general: O(n?m?)

o if emissions are bounded by a:
Pemi(w,w'|q) =0, VYw,w €X*:|w|>dor|w|>d,VqgeQ
we can shortcut recursion:

Yq.6,r = r,n?é Y001 Prrans(919") Pemi(y (¢, €], 2(¢', £]|q)
max{O,Zq— dy < <v¢
max{0,¢ —d} <r' <r

then running time is
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then running time is O(d?nm)
e very important special case d = 1: running time = O(nm)



Running Time

in general: O(n’m?)

if emissions are bounded by d:

Pemi(w,w'|q) =0, VYw,w €X*:|w|>dor|w|>d,VqgeQ
we can shortcut recursion:

Yq.6,r = J,n?é Y001 Prrans(919") Pemi(y (¢, €], 2(¢', £]|q)
max{0,¢ —d} < ¢ < ¢
max{0,¢ —d} <r' <r

then running time is O(d?nm)

very important special case d = 1: running time = O(nm)

further heuristics to reduce running time possible:
compute Viterbi recursion only for subset of (¢, r) € (0, n] x (0, m],
assume it vanishes elsewhere
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1.56

Conservation of Gene Structure and Sequence

Observation

Protein sequences and rough structure of genes are often

conserved between species that are tens of millions of years
separated.

Example (Human-Mouse: 75 million years)

e 95% of orthologous gene pairs have same number of
exons in human and mouse
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1.56

Conservation of Gene Structure and Sequence

Observation

Protein sequences and rough structure of genes are often
conserved between species that are tens of millions of years
separated.

Example (Human-Mouse: 75 million years)

e 95% of orthologous gene pairs have same number of
exons in human and mouse

e coding sequence to ~ 85% identical

>GCACTTTTCTTAAAGGAAAGT AATGGACCAGTGAAGGTGTGGGGAAGCAT TAAAGGACT GACTGAAGGCCTGCATGGAT TCCATGT TCAT GAGT TTGGAGAT AATACAGCAGG TGGGTGT
sop1. T 3 S o B N B B

HumanGCACT TTTCTTAAAGGAAAGT AATGGACCAGTGAAGGTGTGGGGAAGCAT TAAAGGACT GACTGAAGGCCTGCATGGAT TCCATGTTCATGAGT T TGGAGATAATACAGCAGGTGGETG T
MouseGTATTTTT - ATCAAGGCAAGCGGTGAACCAGT TG TGT TGTCAGGACAAATTACAGGAT TAACTGAAGGCCAGCATGGGTTCCACGTCOAT CAGT ATGGGGACAATACACAAGGTAGGT:
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1.56

Conservation of Gene Structure and Sequence

Observation

Protein sequences and rough structure of genes are often
conserved between species that are tens of millions of years
separated.

Example (Human-Mouse: 75 million years)

e 95% of orthologous gene pairs have same number of
exons in human and mouse
e coding sequence to = 85% identical

AT T T A AT a A T CC A A G A A G A A ST CA oS AT CCATCT TCATCAGT I TCCAGATAATACACCASO TGOS TS T
sop1. £ s TG I v bk lw i c i R B R T

AT T T TG T AR A GG ARG T AT e A A TG AN T TG A AT LA A AL A TG A CC AT GAT TCCATGT TCATGAGT TTGGAGATART ACAGCAGETGGSTC T
useGTATTTTT - ATCAAGECAAGCGGTGAACCAGTTGTGT TGTCAGGACAAATTACAGGAT TAACTGAAGGCCAGCATGGGT TCCACGTCCAT CAGTATGGEGACAATACACAAGGTAGET:

o noncoding sequence to ~ 35% identical

ehezt: y3s890| 33035900] 33035910 33035920] 33035930/ 33035940| 33035950| 33035960] 33035970] 33035980/ 33035990]

D AGTOTOOAACAAGAT T ACCATCTCORTT T TOAGOACACAGGCCT AGACCAGT TAAGCAGE T T6CTCOACGTTCACT GO T AGAAACTEOTCAGCCTBRCATT TCOACACAGATT TTTCE
..... TG TG AT T A AT O C T T T T AG G AL A A CC TG A CAG T T ARG CAGC T TGC TGO AG T TCACTGOCTAGAAAS TGS TCAGCC TOSGAT T TEGACACAGATTTT T
Mouse AGTGTT AG GGAG c: GCTCAGE CTCCAGAGCCAC GTAGGAAGTGGGTCTAGGATCTGAACAT AGGTTITT
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A Simple Pair HMM for Eukaryotic Gene Finding

assume 1-to-1
correspondence between
exons

all states emit 2
sequences

<> -shaped states emit
fixed-length and
equal-length seqgs

splice site and “Kodon”
states accomodate for
conservation between the
two species
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