

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Kapitel 1 Genvorhersage

Vorlesung *Algorithmen der Bioinformatik II* vom 27 und 29. April 2010

Dr. Mario Stanke Institut für Mikrobiologie und Genetik Universität Göttingen

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of

Genes Gene Finding Through

Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

These Slides Available At:

http://gobics.de/mario/Abill

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

The study aims of this week.

understand the problem setting of gene finding

2 learn about algorithmic solutions: exon chaining, GHMMs

3 learn about pair HMMs

(used both for gene finding and alignments)

Dr. Mario Stanke

Lernziele / Study Aims

Introduction to Gene-Finding-Problem What Do Genes Look Like?

Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Overview

Introduction to Gene-Finding-Problem What Do Genes Look Like?

Statistical Features of Genes

2 Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

3 Gene Finding with HMMs

Generalized HMMs Model Design Training

Pair Hidden Markov Models

Lernziele / Study Aims

Introduction to Gene-Finding-Problem What Do Genes Look Like? Statistical Features of

Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs Model Design

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Prokaryotes, Eukaryotes

Prokaryotes

Prokaryotes are the set of species that lack a cell nucleus. {prokaryotes} = {bacteria} \cup {archea}

Eukaryotes

Eukaryote are the set of species whose cells have a nucleus. May be unicellular (e.g. some algae) or multicellular (plants and animals).

Copyright by Broad Institute

Lernziele / Study Aims

Introduction to Gene-Finding-Problem What Do Genes Look Like?

Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Prokaryotes, Eukaryotes

• the structure of prokaryotic genes is less complex than those of eukaryotes.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem What Do Genes Look Like?

Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Prokaryotes, Eukaryotes

- the structure of prokaryotic genes is less complex than those of eukaryotes.
- prokaryotic gene finding is
 - easier,
 - algorithmically less interesting
 - and can be considered a special case (missing introns).

Lernziele / Study Aims

Introduction to Gene-Finding-Problem What Do Genes Look Like?

Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

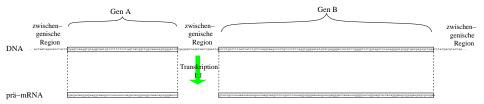
Training

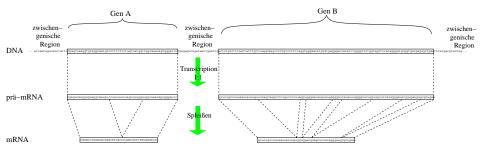
Pair Hidden Markov Models

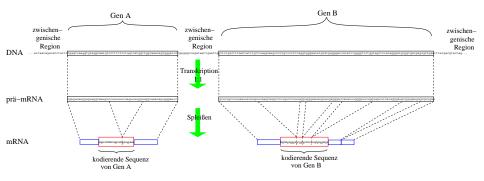
Definitions Application: Comparative Gene Prediction

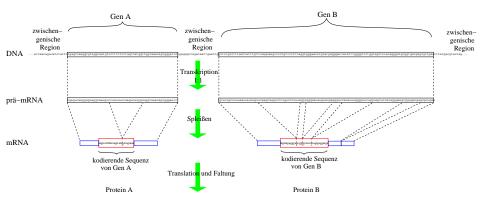
Prokaryotes, Eukaryotes

- the structure of prokaryotic genes is less complex than those of eukaryotes.
- prokaryotic gene finding is
 - easier,
 - algorithmically less interesting
 - and can be considered a special case (missing introns).
- We will therefore restrict lecture to eukaryotes

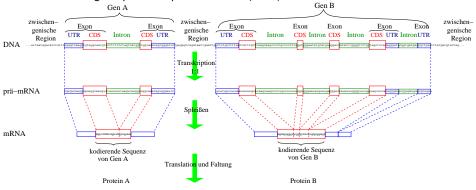


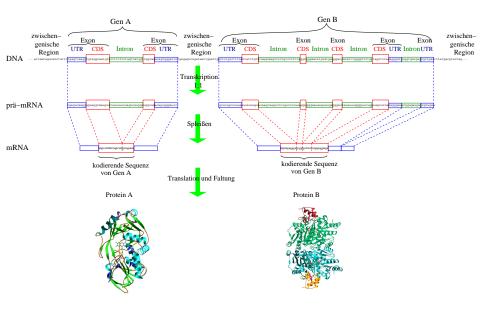






UTR = UnTranslated Region = part of mRNA that is not translated CDS = CcoDing Sequence = part of mRNA (exon) that is translated





Translation

Dr. Mario Stanke

Gene-Finding-Problem What Do Genes Look Like? Statistical Features of

Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

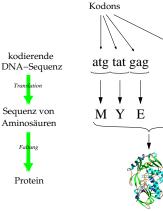
Gene Finding with HMMs

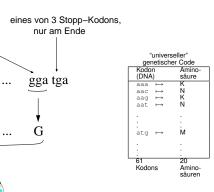
Generalized HMMs

Model Design

Training

Pair Hidden Markov Models





Translation

Faltung

Dr. Mario Stanke

Introduction to Gene-Finding-Problem What Do Genes Look Like? Statistical Features of

Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

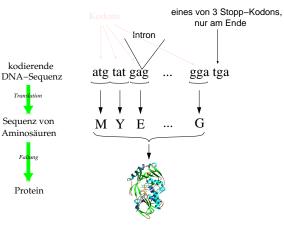
Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models



"universeller" genetischer Code		
Kodon (DNA)	Amino- säure	
aaa ↦	K	
aac ↦	N	
aag →	K	
aat ↔	N	
: atg ↦	M	
	:	
61 Kodons	20 Amino- säuren	

Translation

Faltung

Dr. Mario Stanke

Gene-Finding-Problem What Do Genes Look Like? Statistical Features of

Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

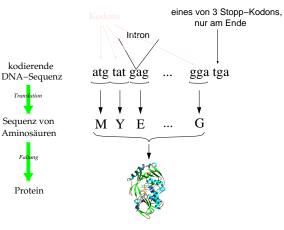
Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models



"universeller" genetischer Code		
Kodon (DNA)	Amino- säure	
aaa ↦	K	
aac →	N	
aag →	K	
aat ↔	N	
: atg →	: M	
61	20	
Kodons	Amino- säuren	

Translation

Tran<mark>sl</mark>ation

Faltung

Dr. Mario Stanke

Gene-Finding-Problem What Do Genes Look Like? Statistical Features of

Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

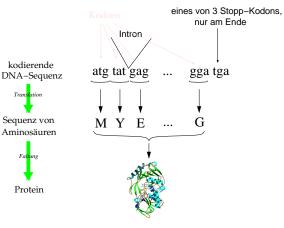
Gene Finding with HMMs

Generalized HMMs

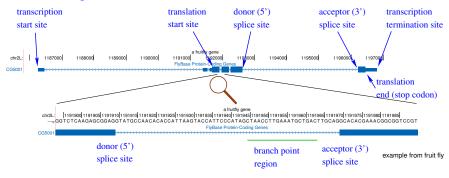
Model Design

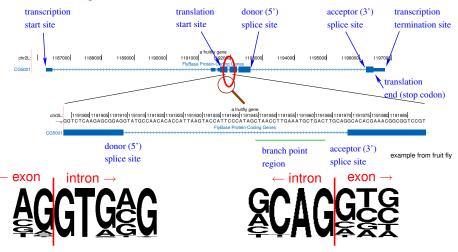
Training

Pair Hidden Markov Models



"universeller" genetischer Code		
Kodon (DNA)	Amino- säure	
aaa ↦	K	
aac →	N	
aag →	К	
aat →	N	
atg →	M	
61 Kodons	20 Amino- säuren	



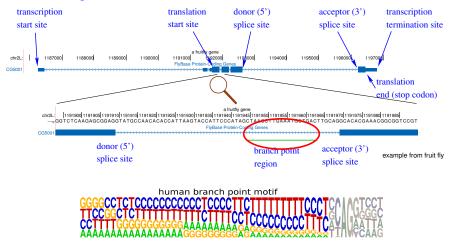


donor splice site (DSS) signal

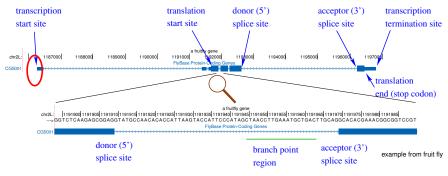
acceptor splice site (ASS) signal

Frequency of the nucleotides at positions relative to splice site.

from green algae Chlamydomonas



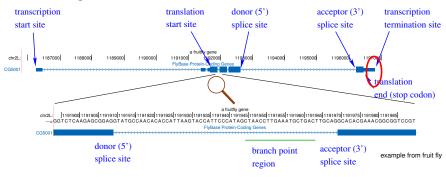
Branch point: upstream of 3' splice site, a single conserved adenine at variable distance to 3' splice site (\approx -30), a splicing complex binds to it, pyrimidine (C,T) rich in human



Transcription start site: Transcription from DNA to RNA by RNA polymerase starts here facilitated by promoter elements.

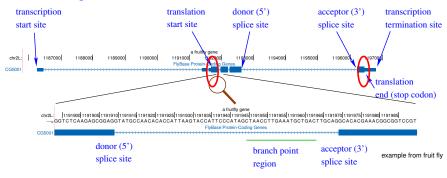
Promoter elements are diverse and their profiles tend to contain little info:

- diverse transcription factor binding sites at very variable positions
- sometimes TATA-box
- "CpG islands"



Transcription termination site (TTS):

- cleavage of the transcript.
- some non-templated A's are appended (polyadenylation).
- polyadenylation is triggered in many species in many genes by the hexamer aataaa roughly 15 bp upstream of the TTS.



Start and stop codon:

- start codon: ATG
- stop codons: TAA, TAG, TGA In some species the genetic code is altered and a "stop codon" is actually coding for an amino acid.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem What Do Genes Look Like? Statistical Features of

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Nucleotide Composition of Coding and Noncoding Regions

Sequence Content

Besides the signals, position-unspecific frequencies of nucleotide patterns can be used to guess biological classification (e.g. CDS, non-coding, CpG-island) of longer sequence intervals.



Typically, higher order patterns are examined: E.g. reading-frame dependent *k*-mer frequencies (k = 5, 6) for protein-coding regions.

Remark

Sequence content is usually only indirect evidence.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem What Do Genes Look Like?

Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Problems and General Ansatz

Problems

• known signal models do not carry much information

Lernziele / Study Aims

Introduction to Gene-Finding-Problem What Do Genes Look Like?

Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Problems and General Ansatz

Problems

- known signal models do not carry much information
- false positive signals because of low number of true positives

Lernziele / Study Aims

Introduction to Gene-Finding-Problem What Do Genes Look Like?

Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Problems and General Ansatz

Problems

- known signal models do not carry much information
- false positive signals because of low number of true positives
- sequence content can be misleading (pseudogenes, repeats)

Lernziele / Study Aims

Introduction to Gene-Finding-Problem What Do Genes Look Like?

Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Problems and General Ansatz

Problems

- known signal models do not carry much information
- false positive signals because of low number of true positives
- sequence content can be misleading (pseudogenes, repeats)

Ansatz

 combine all individual weak info to boost discriminatory power

Lernziele / Study Aims

Introduction to Gene-Finding-Problem What Do Genes Look Like?

Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Problems and General Ansatz

Problems

- known signal models do not carry much information
- false positive signals because of low number of true positives
- sequence content can be misleading (pseudogenes, repeats)

Ansatz

- combine all individual weak info to boost discriminatory power
- enforce standard gene structure:
 - · reading frame consistency between exons
 - minimal splice site consensus (GT/AG, maybe GC/AG)
 - no in-frame stop codons
 - minimal intron length (\approx 40 bp)

Dr. Mario Stanke

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Introduction to Gene-Finding-Problem What Do Genes Look Like? Statistical Features of Genes

2 Gene Finding Through Exon-Chaining The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMM Model Design Training

Pair Hidden Markov Models

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of

Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

This Section Also in My German Script

http://gobics.de/mario/genomanalyse/script.pdf pages 28-32

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Problem Definition

Definition

Let $\mathcal{B} = \{B_1, B_2, \dots, B_n\}$ be a set of intervals with boundaries given by $B_j = [\ell_j, r_j)$ and $\ell_j < r_j$, $(j = 1, \dots, n)$. Let $s_i \in \mathbb{R}$ be the score of interval B_j .

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs Model Design Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Problem Definition

Definition

Let $\mathcal{B} = \{B_1, B_2, \dots, B_n\}$ be a set of intervals with boundaries given by $B_j = [\ell_j, r_j)$ and $\ell_j < r_j$, $(j = 1, \dots, n)$. Let $s_j \in \mathbb{R}$ be the score of interval B_j . A chain $\Gamma = (B_{j_1}, B_{j_2}, \dots, B_{j_d})$ is a sorted sequence of non-overlapping intervals (i.e. $r_{j_i} \leq \ell_{j_{i+1}}$).

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs Model Design Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Problem Definition

Definition

Let $\mathcal{B} = \{B_1, B_2, \dots, B_n\}$ be a set of intervals with boundaries given by $B_j = [\ell_j, r_j)$ and $\ell_j < r_j$, $(j = 1, \dots, n)$. Let $s_j \in \mathbb{R}$ be the score of interval B_j . A chain $\Gamma = (B_{j_1}, B_{j_2}, \dots, B_{j_d})$ is a sorted sequence of non-overlapping intervals (i.e. $r_{j_i} \leq \ell_{j_{i+1}}$). The score of a chain is the sum of the scores of its intervals: $s(\Gamma) = \sum_i^d s_{j_i}$

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs Model Design Training

Pair Hidden Markov

Models

Definitions Application: Comparative Gene Prediction

Problem Definition

Definition

Let $\mathcal{B} = \{B_1, B_2, \dots, B_n\}$ be a set of intervals with boundaries given by $B_j = [\ell_j, r_j)$ and $\ell_j < r_j$, $(j = 1, \dots, n)$. Let $s_j \in \mathbb{R}$ be the score of interval B_j . A chain $\Gamma = (B_{j_1}, B_{j_2}, \dots, B_{j_d})$ is a sorted sequence of non-overlapping intervals (i.e. $r_{j_i} \leq \ell_{j_{i+1}}$). The score of a chain is the sum of the scores of its intervals: $s(\Gamma) = \sum_i^d s_{j_i}$

Definition (One-dimensional Chaining Problem)

For a given set of scored intervals \mathcal{B} find a chain with maximal score.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Example Chaining Problem

Example

 B_1

П

$$B_{1} = [0, 1), S_{1} = 1$$

$$B_{2} = [0, 3), S_{2} = 2$$

$$B_{3} = [2, 4), S_{3} = 2$$

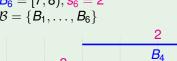
$$B_{4} = [2, 6), S_{4} = 2$$

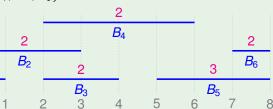
$$B_{5} = [5, 8), S_{5} = 3$$

$$B_{6} = [7, 8), S_{6} = 2$$

$$B = \{B_{1}, \dots, B_{6}\}$$

[0 1)





Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with

HMMs

Generalized HMMs Model Design Training

Pair Hidden Markov

Models

Definitions Application: Comparative Gene Prediction

Example Chaining Problem

Example

$$B_2 = [0,3], s_2 = 2 \\ B_3 = [2,4], s_3 = 2 \\ B_4 = [2,6], s_4 = 2 \\ B_5 = [5,8], s_5 = 3 \\ B_6 = [7,8], s_6 = 2$$

 $B_1 = [0, 1), s_1 = 1$

$$\mathcal{B}_{6} = \{P, 0\}, S_{6} = Z$$

 $\mathcal{B} = \{B_{1}, \dots, B_{6}\}$

$$= [7, 8), \frac{s_6}{s_6} = 2$$

= $\{B_1, \dots, B_6\}$

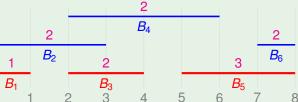
$$= [7, 8), s_6 = 2$$

= $\{B_1, \dots, B_6\}$

$$= \{B_1, \ldots, B_6\}$$

$$\{B_1,\ldots,B_6\}$$

$$\{B_1, \ldots, B_6\}$$



 $\Gamma = (B_1, B_3, B_5)$ is *the* chain with maximal score.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

How to Solve the Chaining Problem?

• brute force too slow: There are 2ⁿ possible chains.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with

HMMs

Generalized HMMs Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

How to Solve the Chaining Problem?

- brute force too slow: There are 2ⁿ possible chains.
- greedy aproach does not correctly solve the problem:

Γ ← () repeat

insert highest-scoring interval into Γ that does not overlap any interval already in Γ until no more interval can be inserted

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

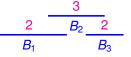
How to Solve the Chaining Problem?

- brute force too slow: There are 2ⁿ possible chains.
- greedy aproach does not correctly solve the problem:

 $\Gamma \leftarrow ()$ repeat

insert highest-scoring interval into Γ that does not overlap any interval already in Γ until no more interval can be inserted

trivial counterexample:



Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Chaining Algorithm

One-Dimensional Chaining Algorithm

1:
$$P \leftarrow \text{sort} \{\ell_1, r_1, \ell_2, r_2, \dots, \ell_n, r_n\}$$
 increasingly
2: $S \leftarrow q \leftarrow q_1 \leftarrow \dots \leftarrow q_n \leftarrow S_1 \leftarrow \dots S_n \leftarrow 0$
3: while P not empty do
4: $b \leftarrow \text{remove smallest element in } P$
5: for all j such that $r_j = b$ do
6: if $S_j > S$ then
7: $S \leftarrow S_j$
8: $q \leftarrow j$
9: end if
10: end for
11: for all j such that $\ell_j = b$ do
12: $S_j \leftarrow s_j + S$
13: $q_j \leftarrow q$
14: end for
15: end while
16: output S as score of best chain

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Chaining Algorithm

Backtracking

- 17: Γ ← ()
- 18: while $q \neq 0$ do
- 19: push B_q onto Γ
- 20: $q \leftarrow q_q$
- 21: end while
- 22: reverse order of **F**
- 23: output Γ as highest scoring chain

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs Model Design Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Correctness

Invariants of the Algorithm

- 1 After very iteration of the main loop in line 3, *S* is the score of the best chain without interval boundaries beyond *b*.
- 2 After every iteration of the main loop in line 3, S_j is the score of the best chain, that ends with interval B_j for all *j* with ℓ_j ≤ *b*.

Proof by induction on the iteration of the main loop in line 3. It follows that after the last iteration S is the score of the overall best chain.

Pointers for Backtracking

Unless undefined $(q_j = 0)$, q_j is the index of the interval immediately left of B_j in a best chain that contains B_j .

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

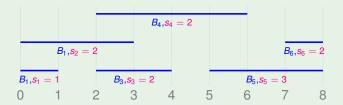
Definitions

Application: Comparative Gene Prediction

Example Algorithm Run

Example

After initialization (line 2): P = (0, 1, 2, 3, 4, 5, 6, 7, 8) S = 0q = 0



Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs Model Design

Training

Pair Hidden Markov Models

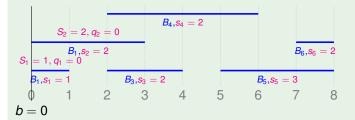
Definitions

Application: Comparative Gene Prediction

Example Algorithm Run

Example

After 1st iteration of main loop (line 3): S = 0q = 0



Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs Model Design

Model Design

Training

Pair Hidden Markov Models

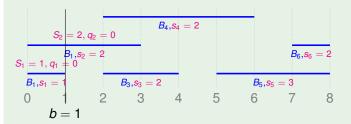
Definitions

Application: Comparative Gene Prediction

Example Algorithm Run

Example

After 2nd iteration of main loop (line 3): S = 1q = 1



Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs Model Design

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Example Algorithm Run

Example

After 3rd iteration of main loop (line 3): S = 1q = 1 $S_4 = 3, q_4 = 1$ $B_{4}, s_{4} = 2$ $S_2 = 2, q_2 = 0$ $B_1, s_2 = 2$ $B_{6}, s_{6} = 2$ $S_1 = 1, q_1 = 0$ $S_3 = 3, q_3 = 1$ *B*₃,*s*₃ = 2 $B_{1}, s_{1} = 1$ $B_5, s_5 = 3$ 3 4 5 6 8 7 b = 2

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

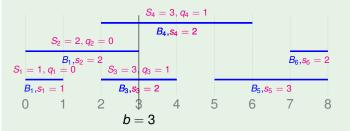
Definitions

Application: Comparative Gene Prediction

Example Algorithm Run

Example

After 4th iteration of main loop (line 3): S = 2q = 2



Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

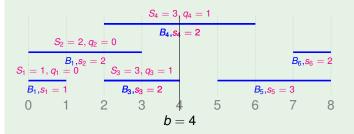
Definitions

Application: Comparative Gene Prediction

Example Algorithm Run

Example

After 5th iteration of main loop (line 3): S = 3q = 3



Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Example Algorithm Run

Example

After 6th iteration of main loop (line 3): S = 3 q = 3 $S_2 = 2, q_2 = 0$ $B_1, s_2 = 2$ B_2 $B_4, s_4 = 2$ $B_4, s_4 = 2$ $B_4, s_4 = 2$

$$S_{4} = 3, q_{4} = 1$$

$$S_{2} = 2, q_{2} = 0$$

$$B_{4}, s_{4} = 2$$

$$S_{1} = 1, q_{1} = 0$$

$$B_{3}, s_{3} = 2$$

$$B_{5}, s_{5} = 3$$

$$0 = 1 = 2 = 3 = 4$$

$$b = 5$$

$$B_{6}, s_{6} = 2$$

$$B_{6}, s_{6} = 2$$

$$B_{6}, s_{6} = 3$$

$$B_{5}, s_{5} = 3$$

$$B_{5}, s_{5} = 3$$

$$b = 5$$

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

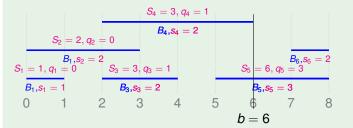
Definitions

Application: Comparative Gene Prediction

Example Algorithm Run

Example

After 7th iteration of main loop (line 3): S = 3q = 3



Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

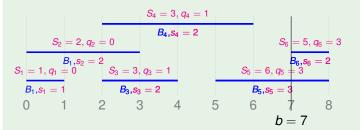
Definitions

Application: Comparative Gene Prediction

Example Algorithm Run

Example

After 8th iteration of main loop (line 3): S = 3q = 3



Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

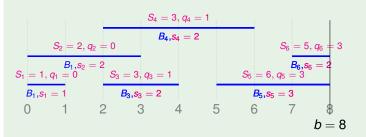
Definitions

Application: Comparative Gene Prediction

Example Algorithm Run

Example

After last iteration of main loop (line 3): S = 6a = 5



Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs Model Design

Model Desigi

Training

Pair Hidden Markov Models

Definitions

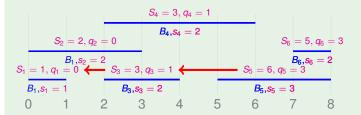
Application: Comparative Gene Prediction

Example Algorithm Run

Example

Backtracking:

Follow q_j pointers starting from q = 5 until q = 0. $\Gamma = (B_1, B_3, B_5)$



Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Running Time

Running Time

Sorting of interval boundaries (line 1):

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Running Time

Running Time

Sorting of interval boundaries (line 1): $O(n \log n)$ Overall time in main loop (lines 3-15):

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Running Time

Running Time

Sorting of interval boundaries (line 1): $O(n \log n)$ Overall time in main loop (lines 3-15): O(n)Backtracking:

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Running Time

Running Time

Sorting of interval boundaries (line 1): $O(n \log n)$ Overall time in main loop (lines 3-15): O(n)Backtracking: O(n)**Overall running time:**

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Running Time

Running Time

Sorting of interval boundaries (line 1): $O(n \log n)$ Overall time in main loop (lines 3-15): O(n)Backtracking: O(n)**Overall running time:** $O(n \log n)$

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with

HMMs

Generalized HMMs Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Running Time

Running Time

Sorting of interval boundaries (line 1): $O(n \log n)$ Overall time in main loop (lines 3-15): O(n)Backtracking: O(n)**Overall running time:** $O(n \log n)$

Remarks:

• The linear running time of the main loop can be realized when for each interval boundary in *P* a list of intervals ending and starting at *b* is stored. For each interval the loops 5-10 and 11-14 are then executed exactly once each (amortized analysis).

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Exon-onaining Algorithm

Gene Finding with HMMs

Generalized HMMs Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Running Time

Running Time

Sorting of interval boundaries (line 1): $O(n \log n)$ Overall time in main loop (lines 3-15): O(n)Backtracking: O(n)**Overall running time:** $O(n \log n)$

Remarks:

- The linear running time of the main loop can be realized when for each interval boundary in *P* a list of intervals ending and starting at *b* is stored. For each interval the loops 5-10 and 11-14 are then executed exactly once each (amortized analysis).
- Special but important case: the intervals have integers as boundaries (sequence positions) in the range 1..*t*
 - \Rightarrow sorting can be done in O(t + n) using Bucket Sort
 - \Rightarrow faster if $t = o(n \log n)$ (dense intervals)

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like?

Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Simple Approach to Gene Finding

• only predict protein-coding part of genes (easier)

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Simple Approach to Gene Finding

• only predict protein-coding part of genes (easier)

interpret gene structure as chain of CDS

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Simple Approach to Gene Finding

- only predict protein-coding part of genes (easier)
- interpret gene structure as chain of CDS
- gene boundaries are implied by CDS boundaries (stop codon)

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Simple Approach to Gene Finding

- only predict protein-coding part of genes (easier)
- interpret gene structure as chain of CDS
- gene boundaries are implied by CDS boundaries (stop codon)
- CDS candidate defined by sequence (integer) interval B_j = [ℓ_j, r_j) score *j*-th CDS candidate:
 - s_j = score of signal at ℓ_j (e.g. ASS or start codon)
 - + score of signal at r_j (e.g. DSS or stop codon)
 - + score of sequence content in $[\ell_j, r_j)$

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Simple Approach to Gene Finding

- only predict protein-coding part of genes (easier)
- interpret gene structure as chain of CDS
- gene boundaries are implied by CDS boundaries (stop codon)
- CDS candidate defined by sequence (integer) interval B_j = [ℓ_j, r_j) score *j*-th CDS candidate:
 - s_j = score of signal at ℓ_j (e.g. ASS or start codon) + score of signal at r_j (e.g. DSS or stop codon)

+ score of sequence content in $[\ell_j, r_j)$

• use chaining algorithm to find "best" exon chain

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Simple Approach to Gene Finding

Signal Score

A number *s* assigned to a sequence position p that is used to decide whether the signal is present at p.

Usually: s = s(w), where *w* is a sequence window around *p*. Aims:

 The larger the score, the more likely is it that there is a true signal.

2 s(w) is "small" for positions p without the signal.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with

HMMs Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Example Signal Score

Example (DSS position weight matrix)

- p = candidate donor splice site position
- w = seq window 2 pos upstream and 5 pos downstream of DSS

Have position specific scoring matrix for DSS

$$m(i,b)$$
 $(i=1,2,\ldots,7,b\in \mathsf{A,C,G,T}),$

m(i, A) + m(i, C) + m(i, G) + m(i, T) = 1

Have "background" distribution of nucleotides q(b)q(A) + q(C) + q(G) + q(T) = 1

Define log-odds score:
$$s = \log \prod_{i=1}^{7} m(i, w_i) / q(w_i)$$

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Exon-onaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Example Content Score

Base composition is frame-dependent

nucleotide frequencies in human:											
		noncoding									
	<i>f</i> = 0	<i>f</i> = 1	<i>f</i> = 2	all f	sequence						
Α	0.248	0.291		0.229	0.26						
С	0.264	0.243	0.351	0.286	0.24						
G	0.321	0.201	0.312	0.278	0.24						
Т	0.166	0.265	0.190	0.207	0.26						

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Example Content Score

Example (frame-dependent Markov chain of order *k*)

Let *w* be the DNA word of length *n* to be scored as CDS. Let $f \in \{0, 1, 2\}$ be the frame of the first position of *w*.

$$P(w) := p_f(w_1, \ldots, w_k) \cdot \prod_{i=k+1}^n p_{f(i)}(w_i | w_{i-k}, \ldots, w_{i-1})$$

- *p_f* is a start probability for the first *k* bases
- Here: $f(i) \in \{0, 1, 2\}$ such that $f(i) \equiv f 1 + i \mod 3$ is the frame of the *i*-th position of *w*

Define $s(w) = \log(P(w)/Q(w))$,

where Q(w) is the probability of w in a "background" model (e.g. non-coding).

Remark: division by background \Rightarrow good exon candidates get positive score

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Example Content Score - Continued

Example

w = ATTCTGCframe f = 2, i.e. with these codon breaks: A||TTC||TGC k = 2

$P(\text{ATTCTGC}) = p_2(\text{AT})p_1(\text{T}|\text{AT})p_2(\text{C}|\text{TT})$ $p_0(\text{T}|\text{TC})p_1(\text{G}|\text{CT})p_2(\text{C}|\text{TG})$

• if $k \ge 2$ above content model can reflect codon usage

- typical: *k* = 4 or *k* = 5
- probabilities p_r(x | y₁,..., y_k) can be estimated on known coding sequences

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Problems with Simple Approach

· reading frame consistency not enforced

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Problems with Simple Approach

- · reading frame consistency not enforced
- \Rightarrow output can be biologically "senseless"

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Problems with Simple Approach

- · reading frame consistency not enforced
- \Rightarrow output can be biologically "senseless"
- \Rightarrow less accurate when this info is ignored

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Problems with Simple Approach

- · reading frame consistency not enforced
- \Rightarrow output can be biologically "senseless"
- \Rightarrow less accurate when this info is ignored
- · CDS candidates with negative score are never used

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs Model Design Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Problems with Simple Approach

- reading frame consistency not enforced
- ightarrow ightarrow output can be biologically "senseless"
- \Rightarrow less accurate when this info is ignored
- CDS candidates with negative score are never used

Need extension to chaining algorithm to enforce consistency.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Exon-onaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Consistent Chaining Problem

Definition

Let $\mathcal{B} = \{B_1, B_2, \dots, B_n\}$ and s_1, \dots, s_n be as above. In addition, let *T* be a finite set of types.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Consistent Chaining Problem

Definition

Let $\mathcal{B} = \{B_1, B_2, \dots, B_n\}$ and s_1, \dots, s_n be as above. In addition, let *T* be a finite set of types. For every interval B_j let pre(j), suc $(j) \in T$ be a predecessor and successor type of interval *j*.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Consistent Chaining Problem

Definition

Let $\mathcal{B} = \{B_1, B_2, \dots, B_n\}$ and s_1, \dots, s_n be as above. In addition, let *T* be a finite set of types. For every interval B_j let pre(j), suc $(j) \in T$ be a predecessor and successor type of interval *j*. A chain $\Gamma = (B_{i_1}, B_{i_2}, \dots, B_{i_d})$ is consistent if

$$suc(j) = pre(j + 1), (j = 1, ..., n - 1).$$

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Consistent Chaining Problem

Definition

Let $\mathcal{B} = \{B_1, B_2, \dots, B_n\}$ and s_1, \dots, s_n be as above. In addition, let *T* be a finite set of types. For every interval B_j let pre(j), suc $(j) \in T$ be a predecessor and successor type of interval *j*. A chain $\Gamma = (B_{j_1}, B_{j_2}, \dots, B_{j_d})$ is consistent if

$$suc(j) = pre(j + 1), (j = 1, ..., n - 1).$$

Definition (Consistent Chaining Problem)

For a given set of scored, typed intervals ${\cal B}$ find a consistent chain with maximal score.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Consistent Chaining Algorithm

Consistent Chaining Algorithm (without Backtracking)

1:
$$P \leftarrow \text{sort} \{\ell_1, r_1, \ell_2, r_2, \dots, \ell_n, r_n\}$$
 increasingly

- 2: $M_t \leftarrow 0$ for all $t \in T$ // initialization
- 3: while P not empty do
- 4: $b \leftarrow$ remove smallest element in P
- 5: **for all** *j* such that $r_j = b$ **do**

if
$$S_j > M_{suc(j)}$$
 then

$$M_{\mathsf{suc}(t)} \leftarrow S_j$$

end if

6:

7:

8:

9: end for

10: for all *j* such that
$$\ell_i = b$$
 do

11:
$$S_j \leftarrow s_j + M_{\text{pre}(j)}$$

- 12: end for
- 13: end while
- 14: output max M_t as score of best chain

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Consistent Chaining Algorithm

 algorithm maintains for each *t* the score *M_t* of the best chain in which the last interval has successor type *t* and ends at or before *b*

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Consistent Chaining Algorithm

- algorithm maintains for each *t* the score *M_t* of the best chain in which the last interval has successor type *t* and ends at or before *b*
- backtracking very similar as in normal chaining algorithm

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with

HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Consistent Chaining Algorithm

- algorithm maintains for each t the score Mt of the best chain in which the last interval has successor type t and ends at or before b
- · backtracking very similar as in normal chaining algorithm
- running time still $O(n \log n)$ if T is considered a constant

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Consistent Chaining Algorithm

- algorithm maintains for each t the score Mt of the best chain in which the last interval has successor type t and ends at or before b
- backtracking very similar as in normal chaining algorithm
- running time still $O(n \log n)$ if T is considered a constant
- best chain can now include intervals with negative score

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

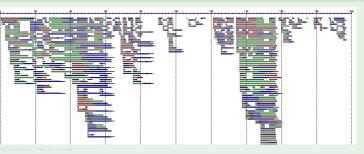
Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Exon Chaining/Assembly

Example (exon candidates in a DNA of length 2000)



- color at left and right end (red, green, blue) specify exon phase at left and right end
- · arrow tips and heads denote start and stop codons

exon candidates of the program GENEID

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs Model Design Training

Pair Hidden Markov Models

Definitions Application: Comparative

Gene Prediction

Exon Chaining/Assembly

Can use Consistent Chaining Algorithm to assemble exon candidates to genes.

exon candidates = intervals

Let T contain the following elements describing a transition type between exons.

boundary	gene boundary
f0+	codon on + strand is split right at boundary
f1+	codon on + strand is split after first base
f2+	codon on + strand is split after second base
f0-	codon on - strand is split right at boundary
f1-	codon on - strand is split after first base
f2-	codon on - strand is split after second base

Define predecessor and successor types of exon candidates so that consistency of chain implies biological consistency of exon sequence.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Consistent Exon Chain

Example suc(1) = f0 + = pre(2)suc(3) = boundary = pre(4)suc(2) = f2 + = pre(3)suc(4) = f2 - = pre(5)ATG *** *** * *** ···· TAG CTA ··· **** CAT ** B₁ **B**₂ B₃ B_4 B₅

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Exon-onaining Aigontinin

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Issues of the Exon Chaining Approach

Problematic:

- introns are not modelled at all:
 - · no length distribution considered
 - no difference to intergenic region

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Issues of the Exon Chaining Approach

Problematic:

- introns are not modelled at all:
 - no length distribution considered
 - no difference to intergenic region
- UTRs: How can one accomodate for exons like these?

UTR CDS

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Issues of the Exon Chaining Approach

Problematic:

- introns are not modelled at all:
 - no length distribution considered
 - no difference to intergenic region
- UTRs: How can one accomodate for exons like these?

UTR CDS

 dividing by background probability implicitly assumes that there are only two alternatives, e.g. exon ↔ noncoding but there are more than two alternatives for a region

Genvorhersage

Dr. Mario Stanke

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Introduction to Gene-Finding-Problem What Do Genes Look Like? Statistical Features of Genes

2 Gene Finding Through Exon-Chaining The One-Dimensional Chaining Problem Exon-Chaining Algorithm

3 Gene Finding with HMMs

Generalized HMMs Model Design Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Reminder: Hidden Markov Model

HMM

• A HMM is a probabilistic model of a word $y = y_1 y_2 \cdots y_n$ ("emission") over some alphabet Σ and of a state sequence $x = (x_1, x_2, \cdots, x_n)$ over some discrete set of states Q.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Reminder: Hidden Markov Model

HMM

- A HMM is a probabilistic model of a word $y = y_1 y_2 \cdots y_n$ ("emission") over some alphabet Σ and of a state sequence $x = (x_1, x_2, \cdots, x_n)$ over some discrete set of states Q.
- The joint distribution of x and y is of the form

$$\mathbf{P}(x,y) = \prod_{i=1}^{n} p(x_i|x_{i-1}) \cdot p(y_i|x_i),$$

where the $p(x_i|x_{i-1})$ are the transition probabilities of a Markov chain and the $p(y_i|x_i)$ are alled emission probabilities.

(x0 is a start state to simplify notation)

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Reminder: Hidden Markov Model

Algorithms

• In applications, normally *y* is observed and *x* is unobserved/hidden.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Reminder: Hidden Markov Model

Algorithms

- In applications, normally *y* is observed and *x* is unobserved/hidden.
- The Viterbi algorithm computes a most likely state sequence x̂ ∈ arg max_x P(x|y) in time O(n).

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Reminder: Hidden Markov Model

Algorithms

- In applications, normally *y* is observed and *x* is unobserved/hidden.
- The Viterbi algorithm computes a most likely state sequence x̂ ∈ arg max_x P(x|y) in time O(n).
- The Forward algorithm can be used to compute *P*(*x*, *y*) in time *O*(*n*).

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Reminder: Hidden Markov Model

Algorithms

- In applications, normally *y* is observed and *x* is unobserved/hidden.
- The Viterbi algorithm computes a most likely state sequence x̂ ∈ arg max_x P(x|y) in time O(n).
- The Forward algorithm can be used to compute P(x, y) in time O(n).
- The Forward and Backward algorithms can be used to compute posterior probabilities P(x_i = q|y) in time O(n).

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Reminder: Generalized Hidden Markov Model

Why GHMMs?

• A HMM is a special case of a GHMM.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Reminder: Generalized Hidden Markov Model

Why GHMMs?

- A HMM is a special case of a GHMM.
- In gene finding and for alignment tasks GHMMs are often used because

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Reminder: Generalized Hidden Markov Model

Why GHMMs?

- A HMM is a special case of a GHMM.
- In gene finding and for alignment tasks GHMMs are often used because
 - they allow a detailed modelling of the length distribution of exons and other biological intervals

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Reminder: Generalized Hidden Markov Model

Why GHMMs?

- A HMM is a special case of a GHMM.
- In gene finding and for alignment tasks GHMMs are often used because
 - they allow a detailed modelling of the length distribution of exons and other biological intervals
 - 2 they accomodate for "silent" or "delete" states required to model alignment gaps

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Definition: Generalized Hidden Markov Model

Definition (Parse)

Let $y = y_1 y_2 \cdots y_n$, Σ , Q be as before. A parse *x* of *y* is a sequence

$$x = ((q_1, v_1), (q_2, v_2), \dots, (q_t, v_t)),$$

with $q_i \in Q$, $v_i \in \mathbb{N}_0$ such that $v_1 \leq v_2 \leq \cdots \leq v_t = n$.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Definition: Generalized Hidden Markov Model

Definition (Parse)

Let $y = y_1 y_2 \cdots y_n$, Σ , Q be as before. A parse *x* of *y* is a sequence

$$x = ((q_1, v_1), (q_2, v_2), \dots, (q_t, v_t)),$$

with $q_i \in Q$, $v_i \in \mathbb{N}_0$ such that $v_1 \leq v_2 \leq \cdots \leq v_t = n$.

$v_0 = 0$	q 1	Vı	$\mathbf{q}_2 \mathbf{v}_2$	V_{i-1}	$\mathbf{q}_i \ \mathbf{v}_i$	V _{t-1}	\mathbf{q}_t \mathbf{v}_t	:
	$y_1 y_2 y_3 \cdots y_n$	ľ _{vi}			$y(v_{i-1}\!\!,v_i]$		y _n	1
					← d _i •			

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Definition: Generalized Hidden Markov Model

Definition (Parse)

Let $y = y_1 y_2 \cdots y_n$, Σ , Q be as before. A parse *x* of *y* is a sequence

$$x = ((q_1, v_1), (q_2, v_2), \dots, (q_t, v_t)),$$

with $q_i \in Q$, $v_i \in \mathbb{N}_0$ such that $v_1 \leq v_2 \leq \cdots \leq v_t = n$.

$v_0 = 0$	\mathbf{q}_1	\mathbf{v}_{l}	$\mathbf{q}_2 \mathbf{v}_2$	V_{i-1}	$\mathbf{q}_i \ \mathbf{v}_i$	V _{t-1}	$\mathbf{q}_t \ \mathbf{v}_t$
	$y_1 y_2 y_3 \cdots$	$\mathbf{y}_{\!\mathbf{v}_{\!\scriptscriptstyle i}}$			$y(v_{i-1}\!\!,v_i]$		y _n
					← d _i •		

• observe that y decomposes via x into $y = y(v_0, v_1]y(v_1, v_2] \cdots y(v_{n-1}, v_n]$ $(v_0 := 0)$

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Definition: Generalized Hidden Markov Model

Definition (Parse)

Let $y = y_1 y_2 \cdots y_n$, Σ , Q be as before. A parse *x* of *y* is a sequence

$$x = ((q_1, v_1), (q_2, v_2), \dots, (q_t, v_t)),$$

with $q_i \in Q$, $v_i \in \mathbb{N}_0$ such that $v_1 \leq v_2 \leq \cdots \leq v_t = n$.

$v_0 = 0$	\mathbf{q}_1	vı	$\mathbf{q}_2 \mathbf{v}_2$	V_{i-1}	$\mathbf{q}_i \ \mathbf{v}_i$	V _{t-1}	\mathbf{q}_t \mathbf{v}_t
	$y_1 y_2 y_3 \cdots$	y_{v_i}			$y(v_{i-1}\!,v_i]$		y _n
					← d _i —		

• observe that y decomposes via x into $y = y(v_0, v_1]y(v_1, v_2] \cdots y(v_{n-1}, v_n]$ ($v_0 := 0$)

• we say that state "q_i ends at v_i"

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Definition: Generalized Hidden Markov Model

Definition (Parse)

Let $y = y_1 y_2 \cdots y_n$, Σ , Q be as before. A parse *x* of *y* is a sequence

$$x = ((q_1, v_1), (q_2, v_2), \dots, (q_t, v_t)),$$

with $q_i \in Q$, $v_i \in \mathbb{N}_0$ such that $v_1 \leq v_2 \leq \cdots \leq v_t = n$.

$v_0 = 0$	\mathbf{q}_1	v _l	$\mathbf{q}_2 \mathbf{v}_2$	v_{i-1}	$\mathbf{q}_i \ \mathbf{v}_i$	V _{t-1}	\mathbf{q}_t \mathbf{v}_t
	$y_1 y_2 y_3 \cdots$	y_{v_i}			$y(v_{i-1}\!\!,v_i]$		y _n
					← d _i —		

- observe that y decomposes via x into $y = y(v_0, v_1]y(v_1, v_2] \cdots y(v_{n-1}, v_n]$ ($v_0 := 0$)
- we say that state "q_i ends at v_i"
- we call $d_i := v_i v_{i-1}$ the length of the *i*-th emission

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Definition: Generalized Hidden Markov Model

Definition (GHMM)

A GHMM is a joint distribution of a word y and a parse x of y of the form

$$P(x, y) = \prod_{i=1}^{t} P_{\text{trans}}(q_i | q_{i-i}) \cdot P_{\text{emi}}(y(v_{i-1}, v_i) | q_i),$$

where $P_{\text{trans}}(\cdot|q)$ is a probability distribution (transition probabilities) over Q for all $q \in Q$ and where $P_{\text{emi}}(\cdot|q)$ is a probability distribution (emission probabilities) over Σ^* for all $q \in Q$.

q0 is a special start state

 $\Sigma^* = \{ all strings with letters in \Sigma \}$ (includes empty string)

Remark: We explicitly allow $d_i = 0$. A state q with $P_{emi}(\epsilon | q) = 1$ is called a silent state (ϵ is the empty string of length 0).

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Delineation of HMM

When is a GHMM called a HMM?

- A HMM is a GHMM in which $d_i \equiv 1$ for all *i*, i.e. all emissions are a single character. In that special case the parse *x* can be identified with the state sequence, which has the same length as *y*
- Sometimes in the literature a GHMM, in which d_i ∈ {0, 1}, is still called a HMM only with some special modifications to the algorithms. Example: "delete" state in profile HMMs

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Algorithms for GHMM

Algorithms

1 Usually, the word *y* is observed.

Now: A concatenation of the emissions, not the sequence of emissions.

Contrast to HMM: The emissions cannot be inferred from *y* alone.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Algorithms for GHMM

Algorithms

- **1** Usually, the word *y* is observed.
 - Now: A concatenation of the emissions, not the sequence of emissions.
 - Contrast to HMM: The emissions cannot be inferred from *y* alone.
- 2 *x* is unobserved, neither the states nor their boundaries are known.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Algorithms for GHMM

Algorithms

- **1** Usually, the word *y* is observed.
 - Now: A concatenation of the emissions, not the sequence of emissions.
 - Contrast to HMM: The emissions cannot be inferred from *y* alone.
- 2 *x* is unobserved, neither the states nor their boundaries are known.
- 3 Analogous Viterbi, Forward and Backward algorithms exists that all run in $O(n^2)$. Important special case: they run in O(n) if all d_i are bounded from above by a constant.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Algorithms for GHMM

Algorithms

- **1** Usually, the word *y* is observed.
 - Now: A concatenation of the emissions, not the sequence of emissions.
 - Contrast to HMM: The emissions cannot be inferred from *y* alone.
- 2 *x* is unobserved, neither the states nor their boundaries are known.
- 3 Analogous Viterbi, Forward and Backward algorithms exists that all run in $O(n^2)$. Important special case: they run in O(n) if all d_i are bounded from above by a constant.
- A prerequisite for points 3 above is that no loops of states with just empty-word-emissions are possible.
 We will ensure that by the design of the model topology.

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

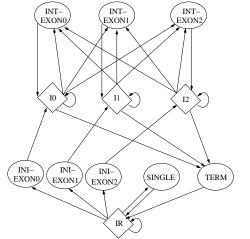
Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

A Simple GHMM for Gene Finding: Model Topology

Model for (multiple) eukaryotic genes on forward strand:



(Arrows denote the transitions with non-zero transition probability.)

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

What (Most) Eukaryotic Species Have in Common?

In Common:

• same genetic code, including start and stop codons

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Trainin

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

What (Most) Eukaryotic Species Have in Common?

- same genetic code, including start and stop codons
- · genes can have introns, may have many

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Trainin

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

What (Most) Eukaryotic Species Have in Common?

- same genetic code, including start and stop codons
- genes can have introns, may have many
- · genes rarely overlap in sequence

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Trainin

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

What (Most) Eukaryotic Species Have in Common?

- same genetic code, including start and stop codons
- genes can have introns, may have many
- · genes rarely overlap in sequence
- introns start almost always with GT, end with AG (some introns GC/AG)

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Trainin

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

What (Most) Eukaryotic Species Have in Common?

- same genetic code, including start and stop codons
- genes can have introns, may have many
- · genes rarely overlap in sequence
- introns start almost always with GT, end with AG (some introns GC/AG)
- more non-coding sequence than coding sequence

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Trainin

Pair Hidden Markov Models

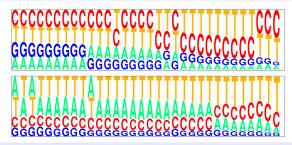
Definitions Application: Comparative Gene Prediction

How Species-Specific Must Gene Finding Models Be?

Differences:

• distribution at signals, e.g. branch point region

top: human / bottom: fly



Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

How Species-Specific Must Gene Finding Models Be?

- distribution at signals, e.g. branch point region
- GC content highly variable

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

How Species-Specific Must Gene Finding Models Be?

- distribution at signals, e.g. branch point region
- · GC content highly variable
- number and length distribution of introns
 top: human / bottom: *C. elegans*

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Trainin

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

How Species-Specific Must Gene Finding Models Be?

- distribution at signals, e.g. branch point region
- · GC content highly variable
- number and length distribution of introns
- length distribution of UTRs

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Trainin

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

How Species-Specific Must Gene Finding Models Be?

- distribution at signals, e.g. branch point region
- · GC content highly variable
- number and length distribution of introns
- length distribution of UTRs
- gene density

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Training: Estimate Species-Specific Parameters

"Training Set"

• input: set of annotated sequences

$$(x^{(k)}, y^{(k)})_{k=1,...,N},$$

such that the parse $x^{(k)}$ represents the gene structure of DNA sequence $y^{(k)}$.

 frequently a few hundred genes constructed from cDNA alignments

Dr. Mario Stanke

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Introduction to Gene-Finding-Problem What Do Genes Look Like? Statistical Features of Genes

2 Gene Finding Through Exon-Chaining The One-Dimensional Chaining Problem Exon-Chaining Algorithm

3 Gene Finding with HMMs

Generalized HMN Model Design Training

Pair Hidden Markov Models

Definitions Application: Comparative Gene Prediction

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Pair HMM versus standard HMM

Pair HMM

• same concept of hidden states

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Pair HMM versus standard HMM

Pair HMM

- same concept of hidden states
- two observed sequences y and z instead of just one

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Pair HMM versus standard HMM

Pair HMM

- · same concept of hidden states
- two observed sequences y and z instead of just one
- an association between character pairs y_i and z_j is usually sought but a priori not known

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Pair HMM versus standard HMM

Pair HMM

- same concept of hidden states
- two observed sequences y and z instead of just one
- an association between character pairs y_i and z_j is usually sought but a priori not known
- typical Bioinformatics applications: alignments, comparative gene finding

Dr. Mario Stanke

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Biparse

Definition (Biparse)

Let *Q* be a finite set (of states).

Let $y = y_1 y_2 \cdots y_n$ and $z = z_1 z_2 \cdots z_m$ be two sequences over an alphabet Σ of lengths *n* and *m*, respectively. A biparse *x* of *y* and *z* is a sequence

$$x = ((q_1, v_1, w_1), (q_2, v_2, w_2), \dots, (q_t, v_t, w_t)),$$

with
$$q_i \in Q$$
, $v_i, w_i \in \mathbb{N}_0$ such that
 $v_1 \leq v_2 \leq \cdots \leq v_t = n$ and $w_1 \leq w_2 \leq \cdots \leq w_t = m$.

Dr. Mario Stanke

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Biparse

Definition (Biparse)

Let *Q* be a finite set (of states).

Let $y = y_1 y_2 \cdots y_n$ and $z = z_1 z_2 \cdots z_m$ be two sequences over an alphabet Σ of lengths *n* and *m*, respectively. A biparse *x* of *y* and *z* is a sequence

$$x = ((q_1, v_1, w_1), (q_2, v_2, w_2), \dots, (q_t, v_t, w_t)),$$

with $q_i \in Q$, $v_i, w_i \in \mathbb{N}_0$ such that $v_1 \leq v_2 \leq \cdots \leq v_t = n$ and $w_1 \leq w_2 \leq \cdots \leq w_t = m$.

- a biparse segments 2 sequences into the same number of segments
- each segment pair y(v_{i-1}, v_i], z(w_{i-1}, w_i] corresponds a single state q_i

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Definition: Pair HMM

Definition (Pair HMM)

A Pair HMM is a joint distribution of two words y and z and a biparse x of them of the form

$$P(x, y, z) = \prod_{i=1}^{t} P_{\text{trans}}(q_i | q_{i-i}) \cdot P_{\text{emi}}(y(v_{i-1}, v_i], z(w_{i-1}, w_i] | q_i),$$

where $P_{\text{trans}}(\cdot|q)$ is a probability distribution (transition probs) over Q for all $q \in Q$ and where $P_{\text{emi}}(\cdot|q)$ is a probability distr. (emission probs) over $\Sigma^* \times \Sigma^*$ for all $q \in Q$.

 $q_0 \in Q$ is a special start state

- Analogous to GHMM, just 2 "simultaneous" emissions instead of 1.
- In practice, P_{emi} often is symmetric: $P_{emi}(a, b|q) = P_{emi}(b, a|q)$ (fewer parameters to train)

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Viterbi Algorithm for Pair HMMs

Definition (Viterbi Variables)

For $q \in Q$, $0 \le \ell \le n$, $0 \le r \le m$ define the Viterbi variable

 $\gamma_{q,\ell,r} := \max_{x \text{ biparse}}$ that ends in

 $P(x, y(0, \ell], z(0, r]).$

 (q, ℓ, r)

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Viterbi Algorithm for Pair HMMs

Definition (Viterbi Variables)

For $q \in Q$, $0 \le \ell \le n$, $0 \le r \le m$ define the Viterbi variable

 $\gamma_{q,\ell,r} :=$ ma x bipa that ends in

$$P(x, y(0, \ell], z(0, r]).$$

 (q, ℓ, r)

Interpretation

 $\gamma_{q,\ell,r}$ is the probability of the most likely parse of y up to ℓ and of z up to r that ends in state q.

Dr. Mario Stanke

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Viterbi Recursion

Viterbi Recursion

$$\gamma_{q,\ell,r} = \max_{\substack{q' \in Q \\ 0 \leq \ell' \leq \ell \\ 0 \leq r' \leq r}} \gamma_{q',\ell',r'} P_{\text{trans}}(q|q') P_{\text{emi}}(y(\ell',\ell],z(r',r]|q)$$

Here, for convenience we define

$$\gamma_{q_0,0,0} = 1, \qquad \gamma_{q,0,0} = 0 \quad \forall q \neq q_0.$$

Dr. Mario Stanke

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Viterbi Recursion

Viterbi Recursion

$$\gamma_{q,\ell,r} = \max_{\substack{q' \in Q \\ 0 \leq \ell' \leq \ell \\ 0 \leq r' \leq r}} \gamma_{q',\ell',r'} P_{\text{trans}}(q|q') P_{\text{emi}}(y(\ell',\ell],z(r',r]|q)$$

Here, for convenience we define

$$\gamma_{\boldsymbol{q}_0,\boldsymbol{0},\boldsymbol{0}}=\boldsymbol{1},\qquad \gamma_{\boldsymbol{q},\boldsymbol{0},\boldsymbol{0}}=\boldsymbol{0}\quad \forall \boldsymbol{q}\neq \boldsymbol{q}_{\boldsymbol{0}}.$$

Assumption

Never the empty string is emitted simultaneously in both sequences:

$$\mathsf{P}_{\mathsf{emi}}(\epsilon,\epsilon|\pmb{q}) = \mathsf{0} \quad \forall \pmb{q} \in \pmb{Q}$$

Dr. Mario Stanke

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Viterbi Recursion

Viterbi Recursion

$$\gamma_{q,\ell,r} = \max_{\substack{q' \in Q \\ 0 \leq \ell' \leq \ell \\ 0 \leq r' \leq r}} \gamma_{q',\ell',r'} P_{\text{trans}}(q|q') P_{\text{emi}}(y(\ell',\ell],z(r',r]|q)$$

Here, for convenience we define

$$\gamma_{q_0,0,0} = 1, \qquad \gamma_{q,0,0} = 0 \quad \forall q \neq q_0.$$

Assumption

Never the empty string is emitted simultaneously in both sequences:

$$\mathsf{P}_{\mathsf{emi}}(\epsilon,\epsilon|m{q}) = \mathsf{0} \quad \forallm{q}\inm{Q}$$

- is anyway the case in our applications
- is sufficient condition that the Viterbi recursion can be iteratively computed

Viterbi Algorithm for Pair HMMs

- 1: initialize $\gamma_{q_0,0,0} \leftarrow 1$, $\gamma_{q,0,0} \leftarrow 0 \quad \forall q \in Q \setminus \{q_0\}$
- 2: for $\ell = 0$ to n do
- 3: **for** *r* = 0 to *m* **do**
- 4: for all $q \in Q$ do
- 5: **if** $\ell \neq 0$ or $r \neq 0$ **then**
- 6: update $\gamma_{q,\ell,r}$ according to Viterbi recursion
- 7: $pre(q, \ell, r) \leftarrow (q', \ell', r') // arg max from Viterbi recursion$
- 8: end if
- 9: end for
- 10: end for
- 11: end for
- 12: // backtracking starts
- 13: $x \leftarrow ()$
- 14: $q \leftarrow \arg \max_{q' \in Q} \gamma_{q',n,m}, \quad \ell \leftarrow n, r \leftarrow m$
- 15: while $\ell > 0$ or r > 0 do
- 16: add (q, ℓ, r) at front of x
- 17: $(q, \ell, r) = pre(q, \ell, r)$
- 18: end while
- 19: output x as a best biparse of y and z

• in general:

- in general: $O(n^2m^2)$
- if emissions are bounded by *d*: $P_{emi}(w, w'|q) = 0$, $\forall w, w' \in \Sigma^* : |w| > d$ or $|w'| > d, \forall q \in Q$ we can shortcut recursion:

 $\gamma_{q,\ell,r} = \max_{\substack{q' \in \mathcal{Q} \\ \max\{0, \ell-d\} \le \ell' \le \ell \\ \max\{0, \ell-d\} \le r' \le r}} \gamma_{q',\ell',r'} P_{\text{trans}}(q|q') P_{\text{emi}}(y(\ell',\ell], z(\ell',\ell]|q)$

then running time is

- in general: $O(n^2m^2)$
- if emissions are bounded by *d*: $P_{emi}(w, w'|q) = 0$, $\forall w, w' \in \Sigma^* : |w| > d$ or $|w'| > d, \forall q \in Q$ we can shortcut recursion:

 $\gamma_{q,\ell,r} = \max_{\substack{q' \in \mathcal{Q} \\ \max\{0, \ell-d\} \le \ell' \le \ell \\ \max\{0, \ell-d\} \le r' \le r}} \gamma_{q',\ell',r'} P_{\text{trans}}(q|q') P_{\text{emi}}(y(\ell',\ell], z(\ell',\ell]|q)$

then running time is $O(d^2 nm)$

- in general: $O(n^2m^2)$
- if emissions are bounded by *d*: $P_{emi}(w, w'|q) = 0$, $\forall w, w' \in \Sigma^* : |w| > d$ or $|w'| > d, \forall q \in Q$ we can shortcut recursion:

 $\gamma_{q,\ell,r} = \max_{\substack{q' \in Q \\ \max\{0, \ell-d\} \leq \ell' \leq \ell \\ \max\{0, \ell-d\} \leq r' \leq r}} \gamma_{q',\ell',r'} P_{\text{trans}}(q|q') P_{\text{emi}}(y(\ell',\ell], z(\ell',\ell]|q)$

then running time is $O(d^2 nm)$

very important special case d = 1: running time = O(nm)

- in general: $O(n^2m^2)$
- if emissions are bounded by *d*: $P_{emi}(w, w'|q) = 0$, $\forall w, w' \in \Sigma^* : |w| > d$ or $|w'| > d, \forall q \in Q$ we can shortcut recursion:

 $\gamma_{q,\ell,r} = \max_{\substack{q' \in Q \\ \max\{0, \ell-d\} \leq \ell' \leq \ell \\ \max\{0, \ell-d\} \leq r' \leq r}} \gamma_{q',\ell',r'} P_{\text{trans}}(q|q') P_{\text{emi}}(y(\ell',\ell], z(\ell',\ell]|q)$

then running time is $O(d^2 nm)$

- very important special case d = 1: running time = O(nm)
- further heuristics to reduce running time possible: compute Viterbi recursion only for subset of (ℓ, r) ∈ (0, n] × (0, m], assume it vanishes elsewhere

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Conservation of Gene Structure and Sequence

Observation

Protein sequences and rough structure of genes are often conserved between species that are tens of millions of years separated.

Example (Human-Mouse: 75 million years)

 95% of orthologous gene pairs have same number of exons in human and mouse

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Conservation of Gene Structure and Sequence

Observation

Protein sequences and rough structure of genes are often conserved between species that are tens of millions of years separated.

Example (Human-Mouse: 75 million years)

- 95% of orthologous gene pairs have same number of exons in human and mouse
- coding sequence to $\approx 85\%$ identical

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

Conservation of Gene Structure and Sequence

Observation

Protein sequences and rough structure of genes are often conserved between species that are tens of millions of years separated.

Example (Human-Mouse: 75 million years)

- 95% of orthologous gene pairs have same number of exons in human and mouse
- coding sequence to $\approx 85\%$ identical

#mmmldcACTITECTIAAAGBAAGTAATGBACCATGBAAGGTGTGGGGAAGCATTAAAGGACTGACTGAAGGCTGCATGGATTCCATGTTCATGAGTTATTGAAGTAATACAGCAGTGGGTG Monaged γιτητ μια γααθαία γααιοστογικάς το στογισμογικάς το ματαγραφικάς το ματογικάς το ματογικάς το ματογικάς

• noncoding sequence to \approx 35% identical

4011, 3303884, 3303894, 3303894, 3303894, 330384, 3303

Lernziele / Study Aims

Introduction to Gene-Finding-Problem

What Do Genes Look Like? Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

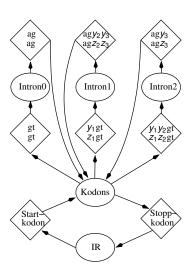
Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction



A Simple Pair HMM for Eukaryotic Gene Finding

- assume 1-to-1 correspondence between exons
- all states emit 2
 sequences
- Shaped states emit fixed-length and equal-length seqs
- splice site and "Kodon" states accomodate for conservation between the two species