Speeding up the DIALIGN multiple alignment

program by using the ‘Greedy Alignment of
BIOlogical Sequences LIBrary’ (GABIOS-LIB)

Said Abdeddaim! and Burkhard Morgenstern?

! LIFAR - ABISS, Faculté des Sciences et Techniques, Université de Rouen,
76821 Mont-Saint-Aignan Cedex, France,
Said.Abdeddaim@univ-rouen.fr
2 AVENTIS Pharma, Rainham Road South, Essex RM10 7XS, UK.
Present address: MIPS, Max-Planck-Institut fiir Biochemie, Am Klopferspitz 18a,
82152 Martinsried Germany
morgenstern@mips.biochem.mpg.de

Abstract. A sensitive method for multiple sequence alignment should
be able to align local motifs that are contained in some but not neces-
sarily in all of the input sequences. In addition, it should be possible to
integrate various of such partial local alignments into one single multiple
output alignment. This leads to the question of consistency of partial
alignments. Based on a new set-theoretical definition of sequence align-
ment, the consistency problem is discussed theoretically, and a recently
developed library of C functions for consistency calculation (GABIOS-
LIB) is described. GABIOS-LIB has been integrated into the DIALIGN
alignment program to carry out comnsistency tests during the multiple
alignment procedure. While the resulting alignments are exactly the same
as with the previous version of DIALIGN, the running time of the pro-
gram has been crucially improved. For large data sets, the new version
of DIALIGN is up to 120 times faster than the old version.

Availability: http://bibiserv.TechFak.Uni-Bielefeld.DE/dialign/
Keywords: Multiple Sequence Alignment, Partial Alignment, Consis-
tency, Consistent Equivalence Relation, Greedy Algorithm.

1 Introduction

Traditionally, there are two different approaches to sequence alignment: global
methods that align sequences over their entire length [8,21,26,25] and local
methods that try to align the most highly conserved sub-regions of the input
sequences [24,23,3,13]. One problem with these approaches is that it is often
not known in advance if sequences are globally or only locally related. A versatile
alignment tool should align those regions of the input sequences that are suffi-
ciently similar to each other but it would not try to align the non-related parts of
the sequences. Thus, such a program would return a global alignment whenever
sequences are globally related but a local alignment if only local homology can be

II

detected. One possible way to achieve this is to integrate statistically significant
(partial) local alignments Py, ..., P into one resulting output alignment A.

The idea to generate sequence alignments by combining partial alignments of
local similarities is not new. Various authors have proposed to generate pairwise
local or global alignments by chaining fragment alignments, see Wilbur and
Lipman [32], Eppstein et al. [7], and Chao and Miller [4]. These authors have
developed time and space efficient fragment-chaining algorithms for near-optimal
alignment in the sense of the traditional Needleman-Wunsch [21] and Smith-
Waterman [24] objective functions. Joseph et al. [11] have proposed a greedy
algorithm that is based on statistically significant segment pairs.

Algorithms that integrate local alignments have also been proposed for mul-
tiple alignment. Here, the problem is to decide whether a collection of local
alignments is consistent. Informally, we call a set {Py,..., Py} of partial align-
ments consistent if an alignment A of the input sequences exists such that every
pair of residues that is aligned by one or several of the alignments P; is also
aligned by A. A formal definition of our notion of consistency will be given in
the next section. The question of consistency is easy to decide if each local align-
ment P; involves all of the input sequences. Vingron and Argos [30], Vingron
and Pevzner [31] and Depiereux et al. [6,5] have proposed multiple alignment
methods that search for motifs that are simultaneously contained in all input
sequences. In this case, a sufficient condition for consistency is that, for any two
local alignments P; and P;, either P; < P; or P; < P; holds where P; < P;
means that in every sequence, residues aligned by P; are to the left of residues
aligned by P;. From a biological point of view, however, it is desirable to al-
low for homologies involving not all but only some of the input sequences. A
multiple alignment program that finds only those similarities that are present
in all sequences in a given input data set will necessarily miss many biologically
important homologies.

Recently, we have introduced three heuristics for multiple alignment that
integrate partial local alignments not necessarily involving all of the input se-
quences. These methods generate multiple alignments in a greedy way by incor-
porating local partial alignments one-by-one into a resulting multiple alignment.
SOUNDALIGN [1] assembles multiple alignments from blocks of un-gapped local
alignments that may involve two or more sequences, DIALIGN [15,17, 18] uses
un-gapped segment pairs —so-called fragments or diagonals —, and TWOALIGN [2]
combines pairwise local alignments in the sense of Smith and Waterman [24] to
obtain a final multiple alignment. During the greedy procedures, these three
programs have to test new partial alignments for consistency with those align-
ments that have already been accepted for the final alignment. To this end, they
store and update certain data structures that are called transitivity frontiers for
SOUNDALIGN and TWOALIGN and consistency bounds for DIALIGN.

DIALIGN has been successfully used to detect local homologies in nucleic
acid and protein sequences. In a recent study, Gottgens et al. [10] have used
DIALIGN to align large genomic sequences from human, mouse and chicken.
In the human/mouse alignment, multiple peaks of homology were found, some

111

of which precisely correspond to known enhancers. In addition, the DTIALIGN
multi-alignment of human, mouse and chicken revealed a new region of homology
that was then experimentally shown to be a previously unknown enhancer, see
also Miller [14] for a discussion of these results. Thompson et al. [28], have
used the BAIIBASE of benchmark alignments [27] to systematically compare
the most widely used programs for multiple protein alignment. Here, DIALIGN
was reported to be the most successful local method. It also performed well on
globally related sequence sets though here CLUSTAL W [26], PRRP [9] and
SAGA [22] were superior. The paper by Thompson et al., however, addressed
also a major weakness of DIALIGN: it is considerably slower than progressive
alignment methods. Aligning a set of 89 histone sequences took as much as
13,649 s with DIALIGN compared to 161 s with CLUSTAL. This may not be a
serious problem if only a single protein family is studied. However, with the huge
amount of genomic sequence data that are now available, automatic alignment
of whole data bases of sequence families has become a routine task, see, for
example, [12,29]. Here, program running time is a crucial criterion in choosing
a suitable alignment method.

Test runs have shown that for large sequence sets, the procedure of updat-
ing the consistency bounds was by far the most time-consuming step in pre-
vious versions of DIALIGN. Abdeddaim has recently developed a library of C
functions called GABIOS-LIB (Greedy Alignment of BIOlogical Sequences LI-
Brary) that can be used to efficiently calculate the transitivity frontiers and to
consistency-check (partial) local alignments that may have been produced by
arbitrary methods. We have integrated GABIOS-LIB into DIALIGN to speed
up the consistency check for fragments (segment pairs). In the present paper,
the time and space complexity of GABIOS-LIB is analysed theoretically and
compared to the method that was previously used in DIALIGN. Experiments
with both artificial and real sequence data demonstrate that GABIOS-LIB is
far more efficient than the previous procedure. In our test examples, the new
version 2.1 of DIALIGN is up to 120 times faster than version 2.0 while the re-
sulting alignments are exactly the same. In addition, GABIOS-LIB has reduced
the amount of computer memory used by DIALIGN.

2 The consistency problem for partial alignments

2.1 Definitions and notations

Let S = {S1,...,Sn} be a sequence family and let X be the set of all sites of
S where a site = [i, p] represents the p-th position in the i-th sequence. On
X, we define a partial order relation < such that for any two sites z = [i, p]
and z' = [i',p'], x < 2’ holds if and only if both i = i’ and p < p' are true. In
the language of order theory, < is the direct sum of the ‘natural’ linear order
relations that are given on the individual sequences. Every binary relation R on
X extends the relation < to a quasi order relation <p= (X UR); on X, where S;
denotes the transitive closure of a relation S, i.e. the smallest transitive relation
containing S, see Figure 1.

v

S1
So

Ss3

Fig. 1. A relation R = {(v,w), (z,y)} (represented by arrows) defined on the set X of
all sites (black dots) of a sequence family § = {S1,S2, Ss} extends the partial order
relation < on X to a quasi partial ordering <r= (=X UR):. We have, for example, v < v,
vRw , w Xz, xRy, y = z and therefore u <g 2.

We call a relation R on X consistent if the extended relation <g preserves
the linear order relations on the individual sequences, formally: if all restrictions
of <g to the individual sequences coincide with their respective ‘natural’ linear
order relations. In other words, the requirement is that for any two sites z and
y that belong to the same sequence, x <g y implies x < y. Moreover, we call a
set {Ry,...,R,} of relations consistent if the union U;R; is consistent, we say
that R; is consistent with Ry if {Ry, R} is consistent, and a pair (z,y) € X2 is
called consistent with a relation R if {(z,y)} is consistent with R.

As proposed in [17], a (partial) alignment A of the family S can be defined as
a consistent equivalence relation on the set X where we write (z,y) € A or zAy if
the sites z and y are either aligned by A or identical. As an equivalence relation,
an alignment A partitions X into equivalence classes [z]a = {y € X : (z,y) € A}
It can be shown that an equivalence relation A on X is an alignment in the sense
of the above definition if and only if it is possible to introduce gap characters
into the sequences S; such that the equivalence classes [z]4,z € X are precisely
those sets of sites that are in the same column of the resulting two-dimensional
array, see [20] for more details.

A common feature of greedy multiple alignment algorithms is that they in-
clude partial alignments Py, ..., Py one after the other into a growing multiple
alignment — always provided that a new alignment P; is consistent with those
alignments that have been included previously. Formally, a monotonously in-
creasing set A; C ... C Ay of alignments is defined by

A =P
A - { (Ai_1 UP;), if P; is consistent with A;_; ;
;=

Ai otherwise, =2,..,k (1)

A final alignment A is then obtained as the largest alignment A = Ay, of this set.
Therefore, every greedy alignment approach has to resolve the question of con-
sistency: at any stage of the alignment procedure, it must be known which pairs

A%

(z,y) € X? are still alignable without leading to inconsistencies with the current
alignment A;, i.e. with those pairs of sites that have already been accepted for
the final alignment.

2.2 Transitivity frontiers and consistency bounds

An alignment A of a sequence family S imposes for every site x € X and every
sequence S; € S a lower bound b4 (z,i) and an upper bound b4 (z,4) such that a
site y = [i,p] € S; is alignable with z without leading to inconsistencies with A if
and only if b, (x,i) < p < ba(z,i) holds, see Figure 2 for an example. Formally,
we define

ba(z,i) = min{p : (z,[i,p]) consistent with A}
and

ba(z,i) = max{p: (z,[i,p]) consistent with A}.

In order to test fragments for consistency during the greedy procedure, previous
versions of DIALIGN calculated and updated these consistency bounds.

S1

Sy

Ss

Sy

Fig. 2. For an alignment A (bold lines) and a site z, the transitivity frontiers with
respect to a sequence S; coincide with the corresponding consistency bounds if z is
aligned to some site in S;. For example, site w in S» is aligned with z, so we have
ba(x,2) = Succa(z,2) = 6. In sequence S;, on the other hand, v is the right-most
site that can be aligned with z, but w is the left-most site with © <4 w, so we have
ba(x,1) =7 but Succa(z,1) =8.

GABIOS-LIB is using a so-called transitivity frontiers to carry out the same
consistency check. Here, the predecessor frontier Preda(z,i) is defined as the
position of the right-most site y in sequence S; such that y <4 z is true, and
the successor frontier Succa(z,i) is defined accordingly as the position of the

VI
left-most site y in sequence S; with x <4 y so we have
Preda(z,i) = max{p: [i,p] 24 z}

and

Succa(z,i) = min{p: z <4 [i,p]}.

The transitivity frontiers are related to the consistency bounds in the fol-
lowing way: if z is already aligned to some site [i,p] in sequence S;, then the
predecessor and successor frontiers of z with respect to S; both equal p and they
coincide with the consistency bounds, i.e. one has

Preda(z,i) = Succa(x,i) = by(x,i) = ba(z,i) = p.

This is, for example, the case for the frontiers and bounds of z with respect to
Ss in Figure 2. In contrast, if no site in S; is aligned with z, one has

Preda(z,i) = by(z,i) —1

and

Succa(z,i) = ba(z,i) +1

as is the case with the corresponding frontiers and bounds with respect to Sy in
Figure 2. Therefore, if it is known for every site = and every sequence S; whether
z is aligned with some site in S;, transitivity frontiers are easily obtained from
the consistency bounds and vice versa, so both data structures are equivalent in
that they contain the same information about which residue pairs are alignable
under the consistency constraints imposed by a given alignment A.

3 GABIOS-LIB

The Greedy Alignment of BIOlogical Sequences LIBrary (GABIOS-LIB) is a
set of functions implemented in ANSI C by Abdeddaim. These functions can
be used by any greedy alignment program in order to test in constant time
which sites in a sequence S; are alignable with a site z of an other sequence
S;. Each time two sites are aligned during the greedy procedure, GABIOS-LIB
updates the transitivity frontiers using the incremental algorithm EdgeAddition
presented in [2]. In addition, GABIOS-LIB uses some ideas first introduced in
[1] to further reduce computing time and memory.

In this section, we discuss how the successor frontiers Succa(z,i) for an
alignment A are affected if a (partial) alignment P is added to A and how the
frontiers Succg(z,) for the resulting alignment B = (AU P), can be calculated.
For symmetry reasons, all results apply to the predecessor frontiers as well.

VII

3.1 The incremental algorithm EdgeAddition

First of all, a simple but important observation is that if a new partial align-
ment P is added to an existing alignment A, the frontiers with respect to the
new alignment B = (AU P), need to be calculated only if B is actually different
from A which is the case if and only if P is not already a subset of A. EdgeAd-
dition stores for every site and every sequence .S; the information whether z
is already aligned with some residue from sequence S;; this information is used
to check if a new alignment P is already contained in A.

If and only if P ¢ A holds, the transitivity frontiers Succp are different from
the frontiers Succ4. In general, however, the frontiers will change not for all but
only for some sites, and the computing time can be minimized by identifying
those sites. For simplicity, we consider the simplest case where a single pair of
sites (z,y) is added to A.

Observation 1 Let A be an alignment of a sequence family S and (z,y) a pair
of sites that is consistent with A. Let B = (AU {(z,y)})e be the alignment that
is obtained by ‘adding’ (x,y) to A. Then for every site u in a sequence S; and
for every sequence S; the successor frontiers of B are

min{Succa(u,j), Succa(y,j)} ifu =<,z
Sucep(u,j) = < min{Succa(u,j),Succa(z,j)} ifu =<4y
Succa(u,j) otherwise.

It follows that the transitivity frontiers can change only for those sites u for
which either u <4 x or u <4 y is true.

3.2 Further reduction of computing time and memory

In order to further reduce the computational costs for calculating the consis-
tency frontiers, GABIOS-LIB uses the following two facts. (1) If two sites x
and y are aligned by A, i.e. if x Ay holds, then they have necessarily the same
frontiers Succa(x,i) = Succa(y,i) for i = 1,..., N. Therefore, rather than pro-
cessing the transitivity frontiers for all individual sites z, GABIOS-LIB stores
and updates the frontiers for those equivalence classes [x]4 that consist of more
than one single site. (2) Let z = [i,p] be an orphan site in the i-th sequence,
i.e. a site that is not aligned with any other site y # x. Then the successor
frontiers Succa(z,j) with respect to all sequences S; # S;, coincide with the
corresponding frontiers of the left-most non-orphan site y = [¢,p'] with p' > p.
In Figure 2, for example, v = [1,7] is an orphan site in S;. The left-most non-
orphan site [1,p'] with p' > 7, is the site w = [1,8]. Therefore for j # 1, the
successor frontiers Succa (v, j) coincide with the corresponding frontiers for w,
i.e. we have Succa(v,j) = Succa(w,j) for j = 2,3,4. Thus, instead of storing
the transitivity frontiers for an orphan site z, the corresponding site y can be
stored in a tabular nextClass by defining nextClass[z]= p’. This way, the fron-
tiers Succa(z,j) of an orphan site z can be established in constant time each
time a new pair of sites is aligned.

VIII

4 Time and space efficient multiple segment-by-segment

alignment
DIALIGN 2.0 DIALIGN 2.1 2.0/2.1
N to to/N® to/N* t1 t1/N? t/N® to/t:
25 22 14107 5.6107° 10 0.016 6.4107* 2.2
50 168 131073 2.610°° 41 0.016 3.3107* 4.1
(I 7 601 14107 1.810°° 100 0.017 2310°* 6.0
100 1402 14107 1410°° 220 0.022 2.2107* 6.8
150 5725 1.6107% 1.1107° 576 0.025 1.7107* 10.0
200 14353 1.7107% 8.9107° 1874 0.046 2.3 107* 7.6
25 46 29107° 1.1107* 10 0.016 6.510~* 4.6
50 640 5.1107% 1.010°* 43 0.017 3.4107* 14.9
(I 75 3282 7.7107% 1.0107* 104 0.018 2.4107* 31.6
100 10557 1.010°2 1.010°* 200 0.020 2.010°* 52.8
150 52431 1.510°2 1.010°* 555 0.024 1.6 10°* 94.5
200 177423 221072 1.110°¢ 1429 0.035 1.71074 124.2
25 25 161072 6.4107° 7 0.011 4410°* 3.5
(II1) 50 341 27107 54107° 29 0011 23107* 11.7
75 1597 3.710°% 5.010°° 73 0.012 1.710°* 21.8
100 5046 5.0107% 5.0107° 147 0.014 14107* 34.3
25 61 3910% 1510°* 14 0.022 8910 4.3
(Iv) 50 844 67107 1.3107* 63 0025 5.0107* 13.3
75 4157 9810 1310°* 149 0.026 3510°* 27.8
100 11619 111072 1.110°* 288 0.028 2.810°* 40.3

Table 1. Running time ¢o and ¢; of versions 2.0 and 2.1 of DTALIGN. Version 2.0 is
using the old method of calculating the consistency bounds while version 2.1 is calcu-
lating the transitivity frontiers using GABIOS-LIB. Sequences are (I) independent and
(I1) 4dentical random sequences of length 100, (III) Immunoglobulin domain sequences
of average length 63.3 and 20% average identity, and (IV) Ribosomal protein L7/L12
C-terminal domain sequences of average length 119.3 and 53% average identity. The
running time improvement achieved by GABIOS-LIB strongly increases with the num-
ber N of sequences to be aligned. For the two sets of real-world sequences, figures are
comparable to the case of identical random sequences where an improvement of up to
120 was achieved.

In order to construct a multiple alignment of a sequence family S, DIALIGN
calculates in a first step optimal pairwise alignments for all possible pairs of
input sequences as explained in [16]. Optimality, in this context, refers to the
segment-based objective function used in DIALIGN as defined in [19,15], i.e.
an optimal pairwise alignment is a chain of fragments (gap-free segment pairs)
f1 € ... < fi such that Zle w(f;) is maximal. Here, w is a weighting function

IX

defined on the set of all possible fragments, and f; < f; means that the end posi-
tions of f; are both strictly smaller than the respective beginning positions of f;.
Fragments from the respective optimal pairwise alignments are then greedily in-
tegrated into a resulting multiple alignment A. Let L be the maximum length of
the sequences S, ..., Sy. Since O(N?) pairwise alignments are performed each
of which consisting of at most L fragments, O(N2L) fragments are to be checked
for consistency. Updating the consistency bounds takes O(N?) time if a new frag-
ment is accepted for alignment. Since previous versions of DIALIGN calculated
the consistency bounds for every fragment that was accepted for alignment, the
worst-case time complexity of the entire greedy procedure was O(N*L). Table 1
shows that the running time of DIALIGN 2.0 is in fact proportional to N* if
identical sequences are aligned where all fragments from the optimal pairwise
alignments are necessarily consistent and are therefore integrated into A.

Let us consider a consistent set of pairs {(z1,y1),.-.,(Zm,ym)} that are
successively integrated into a growing set of alignments Ay C ... C A, by
defining A; = {(z1,y1),- - -, (Zi, ¥i) }e- It was shown in [2] that if each pair (z;,y;)
is actually new, i.e. not yet contained in the previous alignment A;_;, then
GABIOS-LIB takes O(N%?m + |X|?) time to update the transitivity frontiers
during the procedure of integrating all m pairs. It was also explained in [2]
that there can be at most | X| ‘new’ pairs of sites — every additional pair would
either be inconsistent or would already be contained in the current alignment.
Therefore, GABIOS-LIB takes O(N?|X| + |X|*) = O(N3L + N?L?) time to
compute the transitivity frontiers while integrating an arbitrary set of pairs. Note
that this complexity analysis is a worst-case estimate. As shown in Table 1, the
real running time of GABIOS-LIB is better than O(N?3). The new version 2.1
of DTALIGN is still slower than the most widely used multi-alignment program
CLUSTAL W [26], but the difference in running time is now reduced to a factor
of about 10. Parameter optimization should further decrease the running time
of DIALIGN.

N #CB #TF #9B #CB #TF %

H#TF #TF

25 125,000 5,000 25.0 85,700 11,500 7.5
50 (I) 500,000 10,000 50.0 (II1) 346,600 43,900 7.9
75 1,125,000 15,000 75.0 780,000 76,650 10.2
100 2,000,000 20,000 100.0 1,382,800 142,400 9.7
25 125,000 28,050 4.5 148,800 13,300 11.2
50 (I1) 500,000 106,800 4.7 (IV) 609,600 75,600 8.1
75 1,125,000 204,150 5.5 1,356,450 145,350 9.3
100 2,000,000 375,000 5.3 2,403,800 212,200 11.3

Table 2. Number of integers allocated by DIALIGN 2.0 and DIALIGN 2.1 for storing
consistency bounds (#CB) and transitivity frontiers (#1'F'), respectively. Sequence
sets are as in Table 1.

In the previous version of DIALIGN, the consistency bounds were stored for
every site x € X. Since for every x, 2N integer values had to be considered —
upper and lower bounds with respect to all N sequences —, computer memory
had to be allocated for exactly 2N|X| integer values. By contrast, GABIOS-
LIB stores 2N transitivity frontiers only for non-orphan equivalence classes. For
orphan sites, single integers are stored that refer to the next non-orphan site
in the same sequence. In the worst case, the number of non-orphan equivalence
classes is in the order of | X|, so the space complexity for GABIOS-LIB is upper-
bounded by O(|X|N) = O(N2L) which was also the real space complexity of
the old version of DTALIGN. Table 2 shows, however, that the actual memory
requirement for storing the transitivity frontiers with GABIOS-LIB is far smaller
than for storing the consistency bounds in DTALING 2.0.

References

1. S. Abdeddaim. Fast and sound two-step algorithms for multiple alignment of
nucleic sequences. In Proceedings of the IEEE International Joint Symposia on
Intelligence and Systems, pages 4-11, 1996.

2. S. Abdeddaim. Incremental computation of transitive closure and greedy align-
ment. In Proc. of 8-th Annual Symposium on Combinatorial Pattern Matching,
volume 1264 of Lecture Notes in Computer Science, pages 167-179, Heidelberg,
1997. Springer Verlag.

3. S. F. Altschul, W. Gish, W. Miller, E. M. Myers, and D. J. Lipman. Basic local
alignment search tool. J. Mol. Biol., 215:403-410, 1990.

4. K.-M. Chao and W. Miller. Linear-space algorithms that build local alignments
from fragments. Algorithmica, 13:106-134, 1995.

5. E. Depiereux, G. Baudoux, P. Briffeuil, I. Reginster, X. D. Boll, C. Vinals, and
E. Feytmans. Match-Box server: a multiple sequence alignment tool placing em-
phasis on reliability. CABIOS, 13:249-256, 1997.

6. E. Depiereux and E. Feytmans. Match-box: a fundamentally new algorithm for the
simultaneous alignment of several protein sequences. CABIOS, 8:501-509, 1992.

7. D. Eppstein, Z. Galil, R. Giancarlo, and G. Italiano. Sparse dynamic programming
I: Linear cost functions. J. Assoc. Comput. Mach., 39:519-545, 1992.

8. O. Gotoh. An improved algorithm for matching biological sequences. J. Mol. Biol.,
162:705-708, 1982.

9. O. Gotoh. Significant improvement in accuracy of multiple protein sequence align-
ments by iterative refinement as assessed by reference to structural alignments. J.
Mol. Biol., 264:823-838, 1996.

10. B. Gottgens, L. Barton, J. Gilbert, A. Bench, M. Sanchez, S. Bahn, S. Mistry,
D. Gratham, A. McMurray, M. Vaudin, E. Amaya, D. Bentley, and A. Green.
Analysis of vertebrate SCL loci identifies conserved enhancers. Nature Biotechnol-
ogy, 18:181-186, 2000.

11. D. Joseph, J. Meidanis, and P. Tiwari. Determining DNA sequence similarity
using maximum independent set algorithms for interval graphs. Lecture Notes in
Computer Science, 621:326-337, 1992.

12. A. Krause, P. Nicodéme, E. Bornberg-Bauer, M. Rehmsmeier, and M. Vingron.
Www access to the systers protein sequence cluster set. Bioinformatics, 15:262—
263, 1999.

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

XI

C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and J. C.
Wootton. Detecting subtle sequence signals: a gibbs sampling strategy for multiple
alignment. Science, 262(5131):208-14, 1993.

W. Miller. So many genomes, so little time. Nature Biotechnology, 18:148-149,
2000.

B. Morgenstern. DIALIGN 2: improvement of the segment-to-segment approach
to multiple sequence alignment. Bioinformatics, 15:211-218, 1999.

B. Morgenstern. A space-efficient algorithm for aligning large genomic sequences.
Bioinformatics, 16:948-949, 2000.

B. Morgenstern, A. W. M. Dress, and T. Werner. Multiple DNA and protein
sequence alignment based on segment-to-segment comparison. Proc. Natl. Acad.
Sci. USA, 93:12098-12103, 1996.

B. Morgenstern, K. Frech, A. W. M. Dress, and T. Werner. DIALIGN: finding local
similarities by multiple sequence alignment. Bioinformatics, 14:290-294, 1998.

B. Morgenstern, K. Hahn, W. R. Atchley, and A. W. M. Dress. Segment-based
scores for pairwise and multiple sequence alignments. In J. Glasgow, T. Littlejohn,
F. Major, R. Lathrop, D. Sankoff, and C. Sensen, editors, Proceedings of the Sizth
International Conference on Intelligent Systems for Molecular Biology, pages 115—
121, Menlo Parc, CA, 1998. AAAT Press.

B. Morgenstern, J. Stoye, and A. W. M. Dress. Consistent equivalence rela-
tions: a set-theoretical framework for multiple sequence alignment. Materialien
und Preprints 133, University of Bielefeld, 1999.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48:443-453,
1970.

C. Notredame and D. Higgins. SAGA: sequence alignment by genetic algorithm.
Nucleic Acids Research, 24:1515-1524, 1996.

W. R. Pearson and D. J.Lipman. Improved tools for biological sequence compari-
son. Proc. Natl. Acad. Sci. USA, 85:2444-2448, 1988.

T. F. Smith and M. S. Waterman. Comparison of biosequences. Advances in
Applied Mathematics, 2:482-489, 1981.

J. Stoye. Multiple sequence alignment with the divide-and-conquer method. Gene,
211:GC45-GCbh6, 1998.

J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Research,
22:4673-4680, 1994.

J. D. Thompson, F. Plewniak, and O. Poch. BAIiBASE: A benchmark alignment
database for the evaluation of multiple sequence alignment programs. Bioinfor-
matics, 15:87-88, 1999.

J. D. Thompson, F. Plewniak, and O. Poch. A comprehensive comparison of protein
sequence alignment programs. Nucleic Acids Research, 27:2682-2690, 1999.

J. D. Thompson, F. Plewniak, J.-C. Thierry, and O. Poch. DbClustal: rapid
and reliable global multiple alignments of protein sequences detected by database
searches. Nucleic Acids Research, 28:2919-2926, 2000.

M. Vingron and P. Argos. Motif recognition and alignment for many sequences by
comparison of dot-matrices. J. Mol. Biol., 218(1):33-43, 1991.

M. Vingron and P. Pevzner. Multiple sequence comparison and consistency on
multipartite graphs. Advances in Applied Mathematics, 16:1-22, 1995.

J. W. Wilbur and D. J. Lipman. The context dependent comparison of biological
sequences. SIAM J. Appl. Math., 44:557-567, 1984.

