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Cedex, France and 4Research Center for Interdisciplinary Studies on Structure
Formation (FSPM), Universität Bielefeld, Postfach 100131, 33501, Bielefeld,
Germany

Received on July 4, 2001; revised on October 24, 2001; December 10, 2001; accepted on December 20,

2001

ABSTRACT
Motivation: During evolution, functional regions in ge-
nomic sequences tend to be more highly conserved than
randomly mutating ‘junk DNA’ so local sequence similarity
often indicates biological functionality. This fact can be
used to identify functional elements in large eukaryotic
DNA sequences by cross-species sequence comparison.
In recent years, several gene-prediction methods have
been proposed that work by comparing anonymous
genomic sequences, for example from human and mouse.
The main advantage of these methods is that they are
based on simple and generally applicable measures of
(local) sequence similarity; unlike standard gene-finding
approaches they do not depend on species-specific
training data or on the presence of cognate genes in data
bases. As all comparative sequence-analysis methods,
the new comparative gene-finding approaches critically
rely on the quality of the underlying sequence alignments.
Results: Herein, we describe a new implementation of
the sequence-alignment program DIALIGN that has been
developed for alignment of large genomic sequences. We
compare our method to the alignment programs PipMaker,
WABA and BLAST and we show that local similarities
identified by these programs are highly correlated to
protein-coding regions. In our test runs, PipMaker was the
most sensitive method while DIALIGN was most specific.
Availability: The program is downloadable from the DI-
ALIGN home page at http://bibiserv.techfak.uni-bielefeld.
de/dialign/
Contact: burkhard@TechFak.Uni-Bielefeld.DE
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INTRODUCTION
With the huge amount of genomic data that are now
available, gene prediction has become a major challenge
in computational molecular biology. The goal is to de-
velop computer programs that can automatically identify
protein-coding regions in large genomic sequences.
Traditionally, there are two distinct approaches to this
problem, see, for example, Stormo (2000) or Claverie
(1997) for an overview. Ab initio or intrinsic methods use
statistical features such as ORF length, codon frequencies
and the location of potential splice sites to distinguish
coding from non-coding regions in genome sequences
(Krogh et al., 1994; Burge and Karlin, 1997; Lukashin
and Borodovsky, 1998). In contrast, extrinsic methods
try to find similarities between genomic sequences and
known proteins (Gish and States, 1993; Gelfand et al.,
1996; Birney and Durbin, 2000). Both approaches have
advantages and limitations. Ab initio methods are able to
detect genes with no homologues in protein data bases.
It has been shown, however, that the accuracy of these
methods is limited (Burge and Karlin, 1998). Also, ab
initio methods rely on statistical models derived from
limited sets of training data, so they tend to be biased
towards already known genes (Burset and Guigó, 1996).
Homology-based approaches, on the other hand, can
reliably identify genes with sufficiently strong similarity
to known proteins, but are unable to predict genes to
which no homologues are known. Combinations of ab
initio and comparative gene recognition methods have
been proposed by Frishman et al. (1998) and Usuka and
Brendel (2000).

In recent years, a third way of predicting genes and
other functional elements in genomic sequences has been
emerging: it is possible to identify biologically functional
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regions by comparing evolutionary related genomic
sequences with each other see Wiehe et al. (2000) and
Miller (2001) for a review. The rationale behind this
phylogenetic footprinting approach is simple: functional
regions are under selective pressure and tend to be more
highly conserved than non-functional regions that are sub-
ject to random genetic drift, so local sequence similarity
usually indicates biological functionality. Several recent
studies successfully used cross-species sequence com-
parison to identify functional regions in large genomic
sequences (Ansari-Lari et al., 1998; Jang et al., 1999;
Jareborg et al., 1999; Batzoglou et al., 2000; Göttgens
et al., 2000; Mallon et al., 2000; Göttgens et al., 2001)
and it is now widely accepted that comparative sequence
analysis is a powerful and universally applicable tool for
genome analysis and annotation. Even the question which
genomes should be sequenced next is being discussed
in view of the benefits that are to be expected from
comparative sequence analysis (Hardison et al., 1997;
Miller, 2000).

The phylogenetic footprinting idea can also be applied
to the problem of gene identification. A number of novel
gene-prediction tools have been developed that are based
on comparative analysis of genomic sequences from
evolutionary related organisms (Bafna and Huson, 2000;
Batzoglou et al., 2000; Korf et al., 2001; Wiehe et al.,
2001; Rinner and Morgenstern, 2001; Novichkov et
al., 2001). The first and most critical step in sequence
comparison is to construct an alignment of the sequences
in question and the results of any comparative method
crucially depend on the discriminative power of the
underlying alignments. Global pair-wise or multiple
alignment procedures such as the Needleman–Wunsch al-
gorithm (Needleman and Wunsch, 1970) or CLUSTAL W
(Thompson et al., 1994) are clearly not appropriate for
aligning genomic sequences where local homologies
are typically separated by large regions of non-related
sequences. Local methods like BLAST (Altschul et al.,
1990), FASTA (Pearson and Lipman, 1988), or Smith–
Waterman alignments (Smith and Waterman, 1981) are
efficient in detecting isolated peaks of local sequence
similarity, but they do not give an overall picture of the
homologies among large sequences.

Therefore, several new alignment programs have been
developed that are able to cope with large genomic se-
quences. The DNA Block Aligner (Jareborg et al., 1999)
identifies blocks of varying degrees of similarity that may
contain small gaps; large gaps between these blocks are
treated differently to account for long non-conserved re-
gions in the sequences. This tool is specialized for align-
ment of non-coding DNA sequences. Another novel tool
for genomic sequence alignment is MUMmer (Delcher et
al., 1999). MUMmer is extremely fast and has been suc-
cessfully used to align entire genomes of closely related

species; however, the method seems to have difficulties
with aligning sequences from more distantly related or-
ganisms, e.g. from primates and rodents.

For gene-prediction purposes, generally applicable
alignment methods are needed that can cope with coding
as well as non-coding parts of sequences and that are
able to align genomic sequences at different evolutionary
distances. Such methods are, for example, DIALIGN
(Morgenstern et al., 1996; Morgenstern, 1999), PipMaker
(Schwartz et al., 2000), GLASS (Batzoglou et al., 2000)
and WABA (Kent and Zahler, 2000). DIALIGN con-
structs pair-wise and multiple alignments from pairs of
un-gapped segments of the input sequences, so-called
(alignment) fragments. PipMaker aligns genomic se-
quences based on a new implementation of the Gapped
BLAST algorithm (Altschul et al., 1997; Zhang et al.,
1998); local similarities identified by this program are
assembled using a fragment-chaining algorithm by Zhang
et al. (1994). GLASS works by recursively aligning
matching k-mers while WABA breaks large genomic
sequences into smaller blocks that are then aligned using
hidden Markov models. WABA has been used to align
entire eukaryotic genomes consisting of tens of millions of
base pairs. Herein, we outline a new version of DIALIGN
that has been designed for alignment of large genomic
sequences. We use two sets of test data to demonstrate
that this method can help to identify exons in eukaryotic
genomic sequences of several hundred kb in length purely
based on sequence similarity. These results are compared
to results that were obtained with PipMaker, WABA and
BLAST.

MODIFICATIONS TO THE DIALIGN
ALIGNMENT PROGRAM
(a) Sequence similarity at the nucleotide level and
at the peptide level
As described in previous papers, DIALIGN constructs
alignments as collections of so-called (alignment)
fragments, i.e. gap-free local pairwise alignments (Mor-
genstern et al., 1996; Morgenstern, 1999; Abdeddaı̈m
and Morgenstern, 2001). The program assigns a weight
score to every possible fragment reflecting the degree
of similarity among the two segments and then selects
a consistent set of fragments maximizing their total
weight. For pairwise alignment, this means that a chain
of fragments with maximal total weight is selected
(Morgenstern, 2000). If DNA sequences are to be aligned,
DIALIGN can measure the similarity between two seg-
ments in two distinct ways, see Figure 1: the similarity
can be assessed at the nucleotide level by comparing
segments nucleotide-by-nucleotide or at the peptide level
by translating DNA segments according to the genetic
code and then comparing the resulting peptide segments
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Fig. 1. DIALIGN can calculate the weight score of a fragment (=
gap-free segment pair) at two different levels. At the nucleotide
level, the number of matching nucleotide pairs is considered and
the program calculates the probability of finding a fragment of the
respective length with (at least) the same number of nucleotide
matches in random sequences the same length as the input
sequences. The weight of a fragment f is then defined as the
negative logarithm of this probability. Alternatively, the score of
f can be calculated at the peptide level. Here, both segments are
translated according to the genetic code, the BLOSUM values of
the implied amino-acid pairs are summed up and the program
calculates the probability of finding a fragment of the same length
with the respective sum of BLOSUM values. The above fragment,
for example, would have a low weight score at the nucleotide level
since it would be rather likely to find a fragment of length 12 with
5 or more matches in random sequences just by chance. Its weight
at the peptide level, however, would be higher since the four pairs
of implied amino acids have high BLOSUM values so one would be
less likely to find a segment pair with this sum of BLOSUM values
by chance.

using the BLOSUM 62 substitution matrix (Henikoff and
Henikoff, 1992). In both cases, the program calculates
the probability of fragments of the same length and (at
least) the same sum of matches or BLOSUM scores,
respectively, to occur by chance in random sequences.
The weight scores are based on these probabilities, see
Morgenstern (1999) for more details.

With previous versions of DIALIGN, the user had to
decide whether the similarity of DNA segments was to be
assessed at the nucleotide level or at the peptide level. This
is not adequate where large genomic sequences are aligned
since coding regions tend to be more highly conserved at
the peptide level whereas non-coding functional elements
are conserved at the nucleotide level. Consequently, in
the new version of the program, segment pairs can be
compared simultaneously at both levels. In addition, the
peptide-level similarity is calculated for both possible
orientations, i.e. for the plus strand and for the reverse
complement. For every fragment (segment pair) f , all
three respective similarity values are calculated, and the
score of f is then defined to be the maximum of these
three values. As a result, the program can now produce
mixed alignments that consist of nucleotide fragments and
peptide fragments in both orientations depending on which

1. iteration step

f1 f2

2. iteration step

f1 f3 f2 f4

3. iteration step

f1 f3 f2 f4f5

Fig. 2. Iterative scoring scheme for alignment of long genomic
sequences. In the first iteration step, the weight score of a fragment
(gap-free segment pair) is calculated based on the probability
of its occurrence in random sequences the same length as the
input sequences. In subsequent steps, the probability of random
occurrence in the intervals between previously detected fragments
is considered. In the above example, fragments f1 and f2 have
been accepted in the first iteration step, based on the probability of
random occurrence in sequences the size of the input sequences.
In the second iteration step, the weight score of fragment f3 is
calculated based on the probability of finding such a fragment in
the space that is left between fragments f1 and f2. This way,
homologies that do not appear statistically significant if the input
sequences are considered as a whole can be detected if the reduced
space between already accepted fragments is considered.

respective type of local similarity is stronger. In the the
context of this mixed alignment option, we use the terms
N-fragments for segment pairs with stronger similarity at
the nucleotide level and P-fragments for segment pairs
with stronger similarity at the peptide level.

(b) Iterative alignment procedure
Previously, DIALIGN computed the similarity score of
a fragment in terms of the probability of its random
occurrence in sequences the size of the input sequences
and positive scores were assigned only to those fragments
that are rather unlikely to occur by chance. While this
approach works well with sequences of moderate size it
is not sensitive enough to detect small functional elements
in large genomic sequences. In the new release of the
program, a more sophisticated iterative procedure can
be applied: in a first step, the fragments are scored as
explained above and a chain of fragments with sufficiently
high scores is selected based on this scoring scheme.
In subsequent steps, intervals between those fragments
that have been selected in previous steps are realigned.
Here, fragments are assessed based on the probability of
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occurrence in the respective intervals, i.e. in the space
that is left between the segment pairs that have been
previously aligned. This way, segment pairs that do not
appear to be statistically significant if the input sequences
as a whole are considered can be detected if other parts
of the sequences have already been aligned. The number
of iteration steps can be specified by the user; to limit
accumulation of spurious random fragments, the current
implementation of the algorithm uses a default value of
three iteration steps.

(c) Anchored alignments
DIALIGN has originally been developed to study
protein and DNA sequences of relatively small size (e.g.
Morgenstern and Atchley, 2001). During the pair-wise
alignment procedure, the program compares each segment
within the first sequence—up to a certain maximum seg-
ment length—to each segment of the same length within
the second sequence. Consequently, the program running
time for aligning two sequences was proportional to the
product of the sequence lengths (times the maximum
segment length) which makes it difficult to apply the
method to sequences of more than a few hundred kb in
length. One possible way of improving the time efficiency
of the program is to anchor the alignment at regions of
strong sequence similarity thereby reducing the search
space for the alignment procedure.

If anchoring positions x0, . . . , xN in sequence 1 and
y0, . . . , yN in sequence 2 are used such that the program
is forced to align position xi to position yi , 0 ≤ i ≤ N ,
the search space for the alignment procedure is reduced to
∑N

i=1(xi − xi−1) × (yi − yi−1) compared to the product
of the sequence lengths for the non-anchored procedure.
With the new implementation of DIALIGN, it is possible
to anchor alignments at arbitrary user-defined points. Such
anchoring points can be found, for example, by fast
sequence-comparison methods such as BLAST (Altschul
et al., 1990), REPuter (Kurtz and Schleiermacher, 1999;
Kurtz et al., 2000) or CHAOS (Brudno and Morgenstern,
2002). Preliminary results indicate that this way the
program running time can be reduced by around 95%
while the quality of the resulting alignments drops only
by 1–2% (M.Brudno and B.Morgenstern, unpublished
results). The anchoring option can also be used to include
expert knowledge about known homologies in order to
improve the biological quality of the resulting alignments.

TEST RESULTS
To test our method, we used benchmark data from two
different sources. First, we aligned 42 pairs of genomic
sequences from human and mouse compiled by Jareborg
et al. (1999). These sequences vary in length between less
than 6 kb and more than 227 kb (average length 38 kb);
they contain a total of 77 known gene pairs. As a second

example, we aligned a recently published 105 kb segment
from tomato (Ku et al., 2000) to a syntenic 32 kb segment
from Arabidopsis thaliana (The Arabidopsis Thaliana
Initiative, 2000) that we identified by BLAST searches.
Here, the A. thaliana sequence contains nine known genes
with a total of 44 exons but not all of these genes have
homologues in the tomato sequence. After removeing low-
complexity regions with the RepeatMasker software (Smit
and Green, RepeatMasker at http://repeatmasker.genome.
washington.edu/cgi-bin/RepeatMasker), we aligned these
data sets with DIALIGN, PipMaker, WABA, BLASTN
and TBLASTX. A common feature of these programs is
that they clearly distinguish between conserved and non-
conserved regions in the output alignments so we could
evaluate them by comparing conserved regions that they
detected in our test sequences to known exons. For the
human–mouse example, we used the human sequence
as reference, for the tomato–Arabidopsis example, the
reference was Arabidopsis.

The programs in our study are general-purpose align-
ment programs that are based on universally applicable
measures of sequence similarity so they cannot be
expected to precisely delimit the boundaries of protein-
coding regions. Therefore, we evaluated these programs
at the nucleotide level, i.e. we considered nucleotides
that are part of identified sequence similarities as true
positives (TP) if they also belong to annotated exons
and as false positives (FP) if they do not; true and
false negatives (TN and FN) are defined accordingly.
We used standard measures for prediction accuracy,
namely sensitivity Sn = T P/(T P + F N ), specificity
Sp = T P/(T P + F P), and approximate correlation
AC = 0.5((T P/(T P + F N ) + (T P/(T P + F P) +
(T N/(T N + F P) + (T N/(T N + F N )) − 1.

With the new features of DIALIGN described in the
previous section, the program distinguishes between
two levels of sequence similarity, namely similarity at
the nucleotide level (N-fragments) and similarity at the
peptide level (P-fragments). In addition, one can distin-
guish between fragments returned in the first iteration
steps (stronger sequence similarity) and those identified
in subsequent steps (weaker similarity). To study how
these different types of fragments are correlated with
protein-coding regions, we evaluated our results at differ-
ent levels. First, we evaluated the program by considering
all fragments returned by the program—i.e. P-fragments
and N-fragments—then we ignored N-fragments and
considered P-fragments only. To study the effect of
the iterative procedure, we did these experiments (a)

by considering fragments returned in all three iteration
steps that the program performs by default and (b) by
considering only those fragments that were returned in
the first iteration step.

WABA also distinguishes between different levels of
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sequence similarity. The hidden Markov model used by
this program has three different states to model sequence
homology, namely coding regions (C), high similarity
(H) and low similarity (L). As with DIALIGN, we looked
at these different types of similarities separately and we
evaluated WABA in two different ways, namely first by
considering only those regions that are characterized as
coding (C) and then by considering regions characterized
as either coding or high similarity (C + H).

DIALIGN, PipMaker and BLAST produce lists of con-
served segment pairs (fragments) each of which is asso-
ciated with some similarity score. Therefore it is straight
forward to filter out weaker similarities by applying cut-off
values and to evaluate only those fragments that have sim-
ilarity scores above these values. For the fragments identi-
fied by DIALIGN, we used the weight scores described in
the methods section as a filtering criterion; we used thresh-
old values between 0 and 30 and ignored all fragments
with weight scores below these values. For PipMaker, we
considered the percentage-of-identity (PI) values that the
program associates with the returned fragments. PipMaker
uses these values to graphically represent output align-
ments as Percent-of-Identity Plots or PIPs. The PI scores,
however, turned out to be unsuitable as cut-off criteria—
the reason for this is that this scoring scheme does not
take into account the length of a fragment so, for example,
a short fragment with 80% identity would have the same
score as a long fragment with 80% identity. Therefore, in-
stead of using the PI values directly, we used fragment
scores sc defined by

sc = #matches−#mismatches = len×(2×P I−100)/100

were #matches and #mismatches denote the sum of
matches and mismatches, respectively, in a fragment and
len is its length. For PipMaker, we applied threshold
values between 0 and 200 to filter out low-quality frag-
ments. To local similarities identified by BLASTN and
TBLASTX, respectively, we applied varying threshold
values with respect to the scores (measured in bits) that
BLAST returns.

The results of these test runs are summarized in Tables 1
and 2, specificity of DIALIGN, PipMaker, WABA and
BLAST are plotted against sensitivity with various cut-off
values in Figures 3 and 4 and graphical representations
of two DIALIGN alignments are shown in Figures 5
and 6. As expected, DIALIGN was more sensitive but
less specific if the iterative procedure was applied and,
similarly, sensitivity was increased at the expense of
specificity if both P-fragments and N-fragments were
considered. For the human–mouse test examples, the
correlation between fragments returned by DIALIGN and
annotated exons was best if only one iteration step was
performed but both P-fragments and N-fragments were
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Fig. 3. Specificity-sensitivity plot for DIALIGN, PipMaker, WABA,
BLASTN and TBLASTX applied to 42 human–mouse sequence
pairs compiled by Jareborg et al. (1999). Similarities identified
by these programs were compared to annotated exons. DIALIGN
was applied with the new iterative scoring scheme (three iteration
steps) and both P-fragments and N-fragments were considered.
For DIALIGN and PipMaker, WABA and BLAST, a wide variety
of threshold values was applied to the segment pairs returned by
these programs as described in the results section. In this example,
all three programs have high sensitivity values since all genes
in the aligned human sequences have close homologues in the
corresponding mouse sequences. By contrast, specificity is lower
than in the Arabidopsis–tomato example (Figure 4) since, because
of the relatively small evolutionary distance between human and
rodent, there is still considerable sequence conservation in the non-
coding regions of the sequences, compare also Figure 5.

considered (approximate correlation = 0.57). This was
among the highest AC value for the five programs if no
cut-off was applied to the resulting alignments (BLASTN
performed slightly better with an AC value of 0.58). Here,
DIALIGN was the most specific alignment method (Sp =
0.44) while PipMaker was the most sensitive method
(Sn = 0.97). For DIALIGN and PipMaker, specificity
could be considerably increased by applying a threshold
to the fragment scores. A moderate threshold could also
increase the approximate correlation value; the highest
AC value was obtained by PipMaker with a threshold
of 50 (AC = 0.65). Further increased threshold values,
however, resulted in decreased approximate correlation.

In our Arabidopsis–tomato example, all five alignment
programs were more specific but less sensitive than
in the human–mouse example. The general tendency,
however, was similar for both types of test data in
that DIALIGN was most specific and PipMaker was
the most sensitive of the three long-range alignment
programs. In this example, however, BLASTX was even
more sensitive than PipMaker. In the Arabidopsis–tomato
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Table 1. Performance of DIALIGN, PipMaker, WABA and BLAST in view of their ability to detect protein-coding regions in large genomic sequences. Test
data are 42 human–mouse sequence pairs (Jareborg et al., 1999). Aligned residues are counted as true positives (TP) if they are part of annotated exons and
as false positives (FP) if they are not; non-aligned residues are false negatives (FN) if they belong to exons and true negatives (TN) otherwise. Standard
measures for prediction accuracy are used, namely, sensitivity Sn = T P/(T P + F N ), specificity Sp = T P/(T P + F P), and approximate correlation
AC = 0.5((T P/(T P + F N ) + (T P/(T P + F P) + (T N/(T N + F P) + (T N/(T N + F N )) − 1. Various threshold values have been applied to fragments
(segment pairs) identified by DIALIGN and PipMaker as described in the results section.

Human–Mouse
TP FP TN FN Sn Sp AC

DIALIGN, all fragments., three iteration steps

88 570 308 618 1 281 748 12 956 0.87 0.22 0.44
w > 10 78 386 92 564 1 497 802 23 140 0.77 0.45 0.57
w > 20 57 411 42 033 1 548 333 44 115 0.56 0.57 0.54
w > 30 34 254 16 545 1 573 821 67 272 0.33 0.67 0.48

DIALIGN all fragments one iteration step

85 078 128 951 1 461 415 16 448 0.83 0.39 0.57
w > 10 77 927 81 148 1 509 218 23 599 0.76 0.48 0.59
w > 20 57 411 42 033 1 548 333 44 115 0.56 0.57 0.54
w > 30 34 254 16 545 1 573 821 67 272 0.33 0.67 0.48

DIALIGN P-fragments only three iteration steps

69 068 128 260 1 462 106 32 458 0.68 0.35 0.46
w > 10 65 128 63 899 1 526 467 36 398 0.64 0.50 0.54
w > 20 55 193 39 532 1 550 834 46 333 0.54 0.58 0.53
w > 30 34 254 16 545 1 573 821 67 272 0.33 0.67 0.48

DIALIGN P-fragments only one iteration step

68 263 84 299 1 506 067 33 263 0.67 0.44 0.52
w > 10 65 077 61 865 1 528 501 36 449 0.64 0.51 0.54
w > 20 55 193 39 532 1 550 834 46 333 0.54 0.58 0.53
w > 30 34 254 16 545 1 573 821 67 272 0.33 0.67 0.48

PipMaker

98 924 440 852 1 149 514 2 602 0.97 0.18 0.43
sc > 50 90 524 97 124 1 493 242 11 002 0.89 0.48 0.65
sc > 100 63 356 54 819 1 535 547 38 170 0.62 0.53 0.55
sc > 150 34 746 28 840 1 561 526 66 780 0.34 0.54 0.41
sc > 200 18 894 14 313 1 576 053 82 632 0.18 0.56 0.34

WABA

C 53 107 65 246 1 525 120 48 419 0.52 0.44 0.45
C + H 91 379 176 672 1 413 694 10 147 0.90 0.34 0.56

BLASTN

81 648 102 414 1 487 952 19 878 0.80 0.44 0.58
sc > 50 78 717 81 271 1 509 095 22 809 0.77 0.49 0.60
sc > 100 63 823 56 724 1 533 642 37 703 0.62 0.52 0.54

TBLASTX

79 073 159 909 1 430 457 22 453 0.77 0.33 0.49
sc > 50 74 860 81 478 1 508 888 26 666 0.73 0.47 0.57
sc > 100 59 716 55 302 1 535 064 41 810 0.58 0.51 0.52

alignment, DIALIGN reached higher AC scores than all
other programs, but this time the highest AC value was
obtained by considering P-fragments returned during all
three iteration steps.

It should be mentioned that DIALIGN is considerably
slower than the other long-range alignment programs in
our study (and, of course, far slower than BLAST). For

example, WABA aligned a pair of human and murine
sequences of 23.8 kb and 19.7 kb, respectively, in 6
minutes and 12 seconds on a Pentium III (451 MHz)
under Linux while DIALIGN took 21 minutes and 49
seconds for the same data set on the same machine.
A direct comparison of these results with PipMaker is
difficult since PipMaker is only accessible through a
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Table 2. Performance of DIALIGN, PipMaker, WABA and BLAST on a pair of genomic sequences from A. thaliana and tomato. Abbreviations are as in
Table 1

Arabidopsis–Tomato
TP FP TN FN Sn Sp AC

DIALIGN, all fragments, three iteration steps

4 622 1 005 19 967 6 406 0.41 0.82 0.47
w > 5 3 844 174 20 798 7 184 0.34 0.95 0.52
w > 10 3 293 31 20 941 7 735 0.29 0.99 0.50
w > 15 2 077 20 20 952 8 951 0.18 0.99 0.43

DIALIGN, all fragments, one iteration step

3 787 26 20 946 7 241 0.34 0.99 0.53
w > 5 3 533 22 20 950 7 495 0.32 0.99 0.52
w > 10 3 215 22 20 950 7 813 0.29 0.99 0.50
w > 15 2 077 20 20 952 8 951 0.18 0.99 0.43

DIALIGN, P-fragments only, three iteration steps

4 317 204 20 768 6 711 0.39 0.95 0.54
w > 5 3 719 31 20 941 7 309 0.33 0.99 0.53
w > 10 3 293 31 20 941 7 735 0.29 0.99 0.50
w > 15 2 077 20 20 952 8 951 0.18 0.99 0.43

DIALIGN, P-fragments only, one iteration step

3 761 22 20 950 7 267 0.34 0.99 0.53
w > 5 3 533 22 20 950 7 495 0.34 0.99 0.52
w > 10 3 215 22 20 950 7 813 0.29 0.99 0.50
w > 15 2 077 20 20 952 8 951 0.18 0.99 0.43

PipMaker

4 938 1 059 19 913 6 090 0.44 0.82 0.49
sc > 50 3 051 43 20 929 7 977 0.27 0.98 0.49
sc > 100 1 137 21 20 951 9 891 0.10 0.98 0.38
sc > 150 679 6 20 966 10 349 0.06 0.99 0.36

WABA

C 3 973 144 20 828 7 055 0.36 0.96 0.53
C + H 4 282 308 20 664 6 746 0.38 0.93 0.53

BLASTN

1 374 215 20 757 9 654 0.12 0.86 0.33
sc > 50 1 030 20 20 952 9 998 0.09 0.93 0.37
sc > 100 510 8 20 964 10 518 0.04 0.98 0.34

TBLASTX

6 135 1 982 18 990 4 893 0.55 0.75 0.50
sc > 50 5 191 240 20 732 5 837 0.47 0.95 0.59
sc > 100 3 555 60 20 912 7 473 0.32 0.98 0.52

WWW interface (http://bio.cse.psu.edu/pipmaker/) but the
PipMaker WWW server returned an alignment of the
above sequences by e-mail in a matter of seconds.

DISCUSSION
Comparative analysis of large genomic sequences is an
efficient and increasingly important way of predicting
functional elements such as protein-coding regions or
regulatory elements. Recently, a number of gene-finding
algorithms have been proposed that are based on align-
ments of syntenic genomic sequences (Bafna and Huson,

2000; Batzoglou et al., 2000; Korf et al., 2001; Wiehe et
al., 2001; Novichkov et al., 2001). While standard gene-
prediction programs either require detailed statistical
knowledge about the genes to be detected or depend on
the presence of closely related known genes or proteins
in databases, the main advantage of the new comparative
methods is that they are based on simple measures of
local sequence similarity. They are therefore generally
applicable without requiring any species-specific training
data—provided syntenic sequences from related organ-
isms are available. As all comparative sequence-analysis
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Fig. 5. Visualization of an alignment of human and murine genomic sequences as produced by DIALIGN. Lines connecting the sequences
represent fragments (segment pairs) selected in the first iteration step of the alignment procedure. Blue lines are fragments selected in view
of their similarity at the nucleotide level (N-fragments) while red and orange lines are fragments with higher similarity at the peptide level
(P-fragments) at the plus strand (red) and at the minus strand strand (orange), respectively. Vertical bars above the sequences represent the
weight scores of the selected fragments (Fragment Wgt.). Annotated exons are shown in green (anno); positions of the P-fragments are
indicated by red and orange bars above or below the annotated exons in order to make a direct comparison possible. Low-complexity regions
and repeats have been masked using the RepeatMasker software prior to alignment.

Fig. 6. Alignment of genomic sequences from A. thaliana and tomato as produced by DIALIGN. Color coding and abbreviations are as in
Figure 5.

methods, homology-based gene-finding approaches
critically depend on sensitivity and specificity of the
underlying alignment tools.

In this paper, we described a new version of the align-
ment program DIALIGN and we evaluated this program
together with four alternative alignment tools, PipMaker,
WABA, BLASTN and TBLASTX. Our results show that
local sequence similarities identified by these tools are
highly correlated to protein-coding exons, see for example

Figures 5 and 6 for a comparison of the DIALIGN results
with annotated exons. It should be emphasized that all
alignment programs were run with default parameters,
i.e. they did not use any species-dependent information
and the human-mouse alignments were done with exactly
the same parameter settings as the Thaliana–tomato
alignment. Varying cut-off values were applied to exclude
low-scoring regions from the alignments produced by
DIALIGN, PipMaker and BLAST. An important result of
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Fig. 4. Specificity–sensitivity plot for different alignment programs
applied to a pair of large genomic sequences from A. thaliana
and tomato. Thresholds and parameter settings are as in Figure 3,
a graphical representation of the DIALIGN alignment of these
sequences is shown in Figure 6. We have deliberately chosen a
sequence pair with little overall similarity so some of the genes
are contained in only one of the two sequences and can therefore
not be detected by aligning this sequence pair. Consequently, all
three alignment programs have low sensitivity values. By contrast,
their specificity is much higher than in the human-mouse example
(Figure 3 and 5) since among the Arabidopsis–tomato test sequences
there seems to be little sequence conservation outside the protein-
coding regions.

these experiments is that, among the long-range alignment
programs that we have tested, PipMaker is the most sen-
sitive method while DIALIGN is most specific. Figures 3
and 4 demonstrate that, for a wide range of parameters,
DIALIGN is more specific than all other programs in our
study while having the same sensitivity.

With the mixed-alignment option introduced in this pa-
per, DIALIGN can directly compare two distinct levels of
sequences similarity, namely similarity at the nucleotide
level and at the peptide level. Sensitivity to peptide-level
similarity is particularly important where sequences from
distantly related species are compared and a large propor-
tion of synonymous substitutions have occurred. Rivas and
Eddy recently proposed a HMM-based algorithm that is
able to distinguish these different levels of sequence sim-
ilarity in a given alignment in order to discriminate be-
tween protein-coding genes and non-coding RNA genes
(Rivas and Eddy, 2001). In contrast, our approach con-
siders nucleotide-level and peptide-level similarity to con-
struct alignments of genomic sequences that may be lo-
cally related at both respective levels.

Comparison of the BLASTN and TBLASTX results
demonstrates that, for closely related species, sequence
comparison at the nucleotide level can give better results
than comparison at the peptide level while, for larger

evolutionary distances, analysis at the peptide level is
superior; this result is in accordance with similar ob-
servations by Wiehe et al. (2000). To our knowledge,
DIALIGN and WABA are currently the only available
tools that consider these two types of similarity in the pro-
cess of sequence alignment. This enables these methods
to identify conserved protein-coding regions in unaligned
sequences of distantly related species by their similarity at
the peptide level while, in the same alignments, conserved
non-coding regions can be detected by their similarity
at the nucleotide level. Recent results on local sequence
conservation in non-coding DNA suggest that the latter
similarities may correspond to non-coding functional
sites such as regulatory elements (Loots et al., 2000;
Wasserman et al., 2000; Göttgens et al., 2000, 2001).
The iterative scoring scheme introduced in this paper
makes it possible to detect highly conserved regions in
a first iteration step while in subsequent steps, weaker
similarities that may correspond to smaller functional
elements can be identified.

Long-range sequence alignments can reveal homologies
provided they occur in the same relative order within
the input sequences. This restriction limits the number
of local similarities that can be represented in one single
alignment; it works as a filter that can greatly reduce the
noise generated by spurious sequence similarities. Order-
preserving alignment methods can therefore detect even
weak local homologies that would seem insignificant if
they were found isolated in the input sequences—as long
as they are co-linear with other homologies. For this
reason, for example, PipMaker uses a lower threshold
value and is therefore more sensitive if the chaining
option is used that respects the order of local similarities
and returns an optimal chain of local alignments. It is
well known that large-scale genome rearrangements occur
relatively rarely during evolution so, even for distantly
related species, gene order is conserved within large parts
of the genome sequence. Consequently, order-preserving
long-range alignment methods are generally superior to
alternative approaches that return collections of local
sequence similarities regardless of their relative order.

If distantly related species are compared, the colinearity
requirement is, however, a certain limitation as functional
sites occurring in different order in the input sequences
will necessarily be missed. In Figure 6, for example,
the tomato sequence contains large insertions relative to
its counterpart from Arabidopsis and vice versa. Since
exons cannot be detected by aligning these two regions,
DIALIGN, PipMaker, WABA and BLAST had relative
low sensitivity and approximate correlation values. In the
tomato–Arabidopsis example, on the other hand, all align-
ment methods that we tested were highly specific since
the evolutionary distance between is relatively large and
there seems to be little conservation in the non-functional
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parts of the sequences. The situation is different with
the human–mouse sequence pairs that we have used as
our first test data. Here, gene order and orientation are
largely conserved so most exons could be detected by
sequence alignment. In this example, the problem was
rather that—because of the relatively small evolutionary
distance between primates and rodents—considerable
stretches of non-coding sequence are conserved as
well. Consequently, all alignment methods were highly
sensitive but less specific than in the tomato–Thaliana
example.

Generally, the results of any comparative sequence
analysis method crucially depend on the evolutionary
distance between the analyzed sequences. The distance
should be large enough to ensure that conserved functional
elements can be distinguished from randomly mutating
‘junk’ DNA. However, since only those functional sites
can be detected that appear in the same relative order
and orientation, the compared sequences should not be
too far apart. With the growing amount of genome data
that are available in public databases, syntenic sequences
at varying evolutionary distances can be identified and
compared and future studies will show which distances
are most appropriate to detect exons and other functional
elements.
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